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1 Attempts at relativistic quantum mechanics

1.1) β2 = 1 ⇒ eigenvalue-squared = 1 ⇒ eigenvalue = ±1. α2
1 = 1 ⇒ Trβ = Trα2

1β. Cyclic
property of the trace ⇒ Trα2

1β = Trα1βα1. Then {α1, β} = 0 ⇒ Trα1βα1 = −Trα2
1β =

−Trβ. Thus Trβ equals minus itself, and so must be zero. Trαi = 0 follows from this analysis
by taking β → αi and α1 → β.

1.2) For notational simplicity, switch to a discrete notation:
∫

=

∫
d3x1 . . . d

3xn ,

δxy = δ3(x − y) ,

a1 = a(x1) ,

ψ = ψ(x1, . . . ,xn; t) . (1.40)

Using
[X,AB . . . C] = [X,A]B . . . C +A[X,B] . . . C + . . . +AB . . . [X,C] , (1.41)

which follows from writing out the terms on both sides, we have

[a†xay, a
†
1 . . . a

†
n] = [a†xay, a

†
1]a

†
2 . . . a

†
n + a†1[a

†
xay, a

†
2]a

†
3 . . . a

†
n

+ . . .+ a†1 . . . a
†
n−1[a

†
xay, a

†
n] . (1.42)

We have

[a†xay, a
†
i ] = a†x[ay, a

†
i ]∓ ± [a†x, a

†
i ]∓ay ,

= δiya
†
x (1.43)

where [A,B]∓ = AB ∓BA. Using this and ay|0〉 = 0, we find

(a†xay)a
†
1 . . . a

†
n|0〉 =

n∑

i=1

(a†1 . . . a
†
n)i→xδiy|0〉 . (1.44)

Similarly, we have

(a†xa
†
yayax)a

†
1 . . . a

†
n|0〉 =

n∑

i,j=1

(a†1 . . . a
†
n) i→x
j→y

|0〉 (1.45)

for both bosons and fermions. (Extra minus signs with fermions cancel when we move a†x and
a†y into the positions formerly occupied by a†i and a†j.)

Now consider
∫
d3x a†(x)∇2

xa(x)|ψ〉 =
n∑

i=1

∫
d3x

∫
(ψ∇2

xδxi)(a
†
1 . . . a

†
n)i→x|0〉 . (1.46)

We have ∇2
xδxi = ∇2

i δxi. Then we can integrate by parts to put ∇2
i onto ψ, and then integrate

over x using the delta function to get

∫
d3x a†(x)∇2

xa(x)|ψ〉 =
n∑

i=1

∫
(∇2

iψ)a†1 . . . a
†
n|0〉 . (1.47)
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Similarly, ∫
d3x U(x)a†(x)a(x)|ψ〉 =

n∑

i=1

∫
U(xi)|ψ〉 , (1.48)

and ∫
d3x d3y V (x − y)a†(x)a†(y)a(y)a(x)|ψ〉 =

n∑

i,j=1

V (xi − xj)|ψ〉 , (1.49)

which yields the desired result.

1.3) N =
∑
i a

†
iai. Then [N, a†j ] = +a†j and [N, aj ] = −aj for both bosons and fermions. Thus,

using eq. (1.41), we find

[N, a†i1 . . . a
†
in
aj1 . . . ajm ] = (n−m)a†i1 . . . a

†
in
aj1 . . . ajm . (1.50)

Thus if the number of a’s equals the number of a†’s, the operator commutes with N .
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2 Lorentz Invariance

2.1) Start with eq. (2.3) and let Λµρ + δµρ + δωµρ. We will always drop terms that are O(δω2) or
higher. Then we have

gρσ = gµν(δ
µ
ρ + δωµρ)(δ

ν
σ + δωνσ)

= gµν(δ
µ
ρδ
ν
σ + δµρδω

ν
σ + δωµρδ

ν
σ)

= gρσ + gρνδω
ν
σ + gµσδω

µ
ρ

= gρσ + δωρσ + δωσρ , (2.39)

which implies δωρσ + δωσρ = 0.

2.2) Let Λ′ = 1 + δω, so that U(Λ′) = I + i
2h̄δωµνM

µν . Then we have

U(Λ)−1(I + i
2h̄δωµνM

µν)U(Λ) = I + i
2h̄δωµνU(Λ)−1MµνU(Λ) . (2.40)

Using Λ−1(1+δω)Λ = 1 + Λ−1δωΛ, we also have

U(Λ−1(1+δω)Λ) = I + i
2h̄(Λ−1δωΛ)ρσM

ρσ . (2.41)

Now we use

(Λ−1δωΛ)ρσ = (Λ−1)ρ
µδωµνΛ

ν
σ

= ΛµρδωµνΛ
ν
σ

= δωµνΛ
µ
ρΛ

ν
σ . (2.42)

Equating the right-hand sides of eqs. (2.40) and (2.41) gives eq. (2.12), which, by the argument
in the text, then yields eq. (2.13).

2.3) We start with
U(1+δω)−1 = U(1−δω) = I − i

2h̄δωρσM
ρσ , (2.43)

and so, for any operator A,

U(1+δω)−1AU(1+δω) = A+ i
2h̄δωρσ[A,M

ρσ ] . (2.44)

In particular,
U(1+δω)−1MµνU(1+δω) = Mµν + i

2h̄δωρσ [M
µν ,Mρσ] . (2.45)

Also,

(1+δω)µρ(1+δω)νσM
ρσ

= Mµν + δωµρM
ρν + δωνσM

µσ

= Mµν + δωσρg
σµMρν + δωρσg

ρνMµσ

= Mµν − δωρσ(g
σµMρν − gρνMµσ)

= Mµν − 1
2δωρσ(g

σµMρν − gρνMµσ − gρµMσν + gσνMµρ) .

(2.46)

Equating the right-hand sides of eqs. (2.45) and (2.46) and matching the coefficients of δωρσ
gives

[Mµν ,Mρσ ] = ih̄(gσµMρν − gρνMµσ − gρµMσν + gσνMµρ) . (2.47)

Using gµν = gνµ and Mµν = −Mνµ then yields eq. (2.16).
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2.4) From eq. (2.47), we have

[M i0,M j0] = ih̄(g0iM j0 − gj0M i0 − gjiM00 + g00M ij)

= ih̄(0 − 0 − 0 + (−1)M ij) . (2.48)

Using M00 = 0, M i0 = Ki, and M ij = εijkJk, eq. (2.48) becomes

[Ki,Kj] = −ih̄εijkJk . (2.49)

Similarly,

[Mkl,M j0] = ih̄(g0kM jl − gjlMk0 − gjkM0l + g0kM lj)

= ih̄(0 − δjlKk − δjk(−K l) + 0) . (2.50)

Multiply by 1
2ε
ikl and use J i = 1

2ε
iklMkl to get

[J i,Kj] = 1
2 ih̄(−εikjKk + εijlK l)

= ih̄εijkKk . (2.51)

Similarly,

[J1, J2] = [M23,M31]

= ih̄(g12M33 − g33M21 − g32M13 + g12M33)

= ih̄(0 −M21 − 0 + 0)

= ih̄J3 , (2.52)

and cyclic permutations of 123.

2.5) From eq. (2.44), we have

U(1+δω)−1PµU(1+δω) = Pµ + i
2h̄δωρσ [P

µ,Mρσ] . (2.53)

Also,

(1+δω)µρP
ρ = Pµ + δωµρP

ρ

= Pµ + δωσρg
σµP ρ

= Pµ + 1
2δωσρ(g

σµP ρ − gρµP σ)

= Pµ − 1
2δωρσ(g

σµP ρ − gρµP σ) . (2.54)

Equating the right-hand sides of eqs. (2.53) and (2.54), and matching the coefficients of δωρσ
gives

[Pµ,Mρσ] = ih̄(gσµP ρ − gρµP σ) , (2.55)

which is equivalent to eq. (2.18).
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2.6) Starting with eq. (2.55) we have

1
2ε
ikl[P 0,Mkl] = 1

2ε
ikl(ih̄)(gl0P k − g0kP l)

= 0 , (2.56)
1
2ε
ikl[P j,Mkl] = 1

2 ih̄ε
ikl(ih̄)(gljP k − gkjP l)

= −ih̄εijkP k , (2.57)

[P 0,M i0] = ih̄(g00P i − gi0P 0)

= ih̄((−1)P i − 0) , (2.58)

[P j,M i0] = ih̄(g0jP i − gijP 0)

= ih̄(0 − δijP 0) . (2.59)

Using J i = 1
2ε
iklMkl, Ki = M i0, and H = P 0, and doing a little rearranging, we get eq. (2.19).

2.7) Translations should add: T (a1)T (a2) = T (a1 + a2). Then taking ai to be infinitesimal yields
[Pµ, P ν ] = 0. (This is left as a further exercise.)

2.8) a) Using eq. (2.44), the left-hand side of eq. (2.26) becomes

U(1+δω)−1ϕ(x)U(1+δω) = ϕ(x) + i
2h̄δωµν [ϕ(x),Mµν ] . (2.60)

Using ϕ(x+δx) = ϕ(x) + δxν∂
νϕ(x), the right-hand side of eq. (2.26) becomes

ϕ((1−δω)x) = ϕ(x) − δωνµx
µ∂νϕ(x)

= ϕ(x) + 1
2δωµν(x

µ∂ν − xν∂µ)ϕ(x) . (2.61)

We now get eq. (2.29) by matching the coefficients of δωµν in eqs. (2.60) and (2.61).

b) The key point is that Lµν , a differential operator acting on functions of x, commutes with
Mρσ, an operator in Hilbert space that is inpedendent of x. Therefore, acting on [ϕ,Mρσ ]
with Lµν , we get

Lµν [ϕ,Mρσ ] = [Lµνϕ,Mρσ ] . (2.62)

On the LHS of eq. (2.62), we use [ϕ,Mρσ ] = Lρσϕ. On the RHS, we use Lµνϕ = [ϕ,Mµν ].
The result is

LµνLρσϕ = [[ϕ,Mµν ],Mρσ ] . (2.63)

c) Terms cancel in pairs when all the commutators are expanded out.

d) Exchanging µν ↔ ρσ in eq. (2.63), we get

LρσLµνϕ = [[ϕ,Mρσ ],Mµν ]

= −[[Mρσ , ϕ],Mµν ] . (2.64)

Subtracting eq. (2.64) from eq. (2.63), we have

[Lµν ,Lρσ]ϕ = [[ϕ,Mµν ],Mρσ ] + [[Mρσ , ϕ],Mµν ]

= −[[Mµν ,Mρσ], ϕ]

= [ϕ, [Mµν ,Mρσ]] , (2.65)
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where the second equality follows from the Jacobi identity.

e) We begin with

(xµ∂ν)(xρ∂σ) = xµ(gνρ + xρ∂ν)∂σ

= gνρxµ∂σ + xµxρ∂ν∂σ . (2.66)

Exchanging µν ↔ ρσ and subtracting, we get

[xµ∂ν , xρ∂σ] = gνρxµ∂σ − gσµxρ∂ν . (2.67)

Antisymmetrizing on µ↔ ν, we find

[xµ∂ν − xν∂µ, xρ∂σ] = + gνρxµ∂σ − gσµxρ∂ν

− gµρxν∂σ + gσνxρ∂µ . (2.68)

Antisymmetrizing on ρ↔ σ and regrouping, we find

[xµ∂ν − xν∂µ, xρ∂σ − xσ∂ρ] = + gνρ(xµ∂σ − xσ∂µ)

− gσµ(xρ∂ν − xν∂ρ)

− gµρ(xν∂σ − xσ∂ν)

+ gσν(xρ∂µ − xµ∂ρ) . (2.69)

Using xµ∂ν − xν∂µ = (i/h̄)Lµν , we get

[Lµν ,Lρσ] = ih̄(−gνρLµσ + gσµLρν + gµρLνσ − gσνLρµ) . (2.70)

This is equivalent to eq. (2.47) for the M ’s.

f) This follows immediately from eqs. (2.47), (2.65), and (2.70), and [ϕ,Mρσ ] = Lρσϕ. See
Weinberg I for a proof that there is no central charge.

2.9) a) Eq. (2.27) is equivalent to U(Λ)−1∂ρϕ(x)U(Λ) = ∂ρϕ(Λ−1x), which is just the derivative
of U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x). The infinitesimal form of the latter is [ϕ,Mµν ] = Lµνϕ.
Acting with ∂ρ, we get

[∂ρϕ,Mµν ] = ∂ρLµνϕ . (2.71)

Next we use

[∂ρ,Lµν ] = h̄
i [∂

ρ, xµ∂ν − xν∂µ]

= h̄
i ([∂

ρ, xµ]∂ν − [∂ρ, xν ]∂µ)

= h̄
i (g

ρµ∂ν − gρν∂µ)

= h̄
i (g

ρµδντ − gρνδµτ )∂
τ

= (SµνV )ρτ∂
τ . (2.72)

Thus we have
[∂ρϕ,Mµν ] = Lµν∂ρϕ+ (SµνV )ρτ∂

τϕ . (2.73)
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b) First, note that (SµνV )ρρ = 0. Next, define (Lµν)ρτ ≡ Lµνδρτ . Then, suppressing the
matrix indices, we have [Lµν , SρσV ] = 0. Now define J µν ≡ Lµν + SµνV . Then we have

[∂ρϕ,Mµν ] = (J µν)ρτ∂
τϕ . (2.74)

Now we can repeat the analysis in problem 2.8 to conclude that the J ’s have the same
commutation relations as the M ’s. Since L’s and SV’s commute, the SV’s by themselves
must have the same commutation relations. (Of course, this can be verified with a direct but
tedious calculation.)

c) Note that eq. (2.33) yields

S12
V

= h̄




0 0 0 0
0 0 −i 0
0 +i 0 0
0 0 0 0


 . (2.75)

Since the first and last row and column are all zeroes, we can focus on the middle rows and
columns, and write S12

V
= h̄σ2, where σ2 is a Pauli matrix, which has eigenvalues ±1. For

any matrix like σ2 with eigenvalues ±1, we have (σ2)
2 = 1, and so, by Taylor expansion,

exp(−iθσ2) = (cos θ) − i(sin θ)σ2. Thus we have

exp(−iθS12
V

) =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 . (2.76)

d) Note that eq. (2.33) yields

S30
V

=
h̄

i




0 0 0 +1
0 0 0 0
0 0 0 0

+1 0 0 0


 . (2.77)

Since the middle rows and columns are all zeroes, we can foucs on the first and last row and
column, and write S30

V
= h̄σ1, where σ1 is a Pauli matrix, which has eigenvalues ±1. For

any matrix like σ1 with eigenvalues ±1, we have (σ1)
2 = 1, and so, by Taylor expansion,

exp(ησ1) = (cosh η) + (sinh η)σ1. Thus we have

exp(−iθS30
V

) =




cosh η 0 0 sinh η
0 1 0 0
0 0 1 0

sinh η 0 0 cosh η


 . (2.78)
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3 Canonical Quantization of Scalar Fields

3.1) We begin with

a(k) =

∫
d3x e−ikx

[
iΠ(x) + ωϕ(x)

]
,

a†(k) =

∫
d3y e+iky

[
−iΠ(y) + ωϕ(y)

]
. (3.39)

Since a(k) and a†(k) are time independent, we can take y0 = x0. Then we have

[a(k), a(k′)] =

∫
d3x d3y e−ikx−ik

′y
(
[iΠ(x), ωϕ(y)] + [ωϕ(x), iΠ(y)]

)

=

∫
d3x d3y e−ikx−ik

′y
(
−i2ωδ3(x−y) + i2ωδ3(x−y)

)

= 0 . (3.40)

Then [a†(k), a†(k′)] = 0 follows by hermitian conjugation. Also,

[a(k), a†(k′)] =

∫
d3x d3y e−ikx+ik

′y
(
[iΠ(x), ωϕ(y)] + [ωϕ(x),−iΠ(y)]

)

=

∫
d3x d3y e−ikx+ik

′y
(
−i2ωδ3(x−y) − i2ωδ3(x−y)

)

= 2ω

∫
d3x d3y e−ikx+ik

′y δ3(x−y)

= 2ω

∫
d3x e−i(k−k′)·xe+i(k

0−k′0)x0

= 2ω(2π)3δ3(k − k′) . (3.41)

3.2) We begin by noting that

[a†(k)a(k), a†(k1) . . . a
†(kn)] = [a†(k)a(k), a†(k1)]a

†(k2) . . . a
†(kn)

+ . . .+ a†(k1)a
†(k2) . . . [a

†(k)a(k), a†(kn)]

= (2π)32ωδ3(k − k1)a
†(k)a†(k2) . . . a

†(kn)

+ . . .+ (2π)32ωδ3(k− kn)a
†(k1)a

†(k2) . . . a
†(k) . (3.42)

Multiplying by ω(k) and integrating over d̃k = d3k/(2π)22ω, we find

[H,a†(k1) . . . a
†(kn)] = (ω1 + . . .+ ωn)a

†(k1) . . . a
†(kn) , (3.43)

and hence, since H|0〉 = 0,

Ha†(k1) . . . a
†(kn)|0〉 = (ω1 + . . .+ ωn)a

†(k1) . . . a
†(kn)|0〉 . (3.44)

3.3) Define the four-dimensional Fourier transform

ϕ̃(k) ≡
∫
d4x e−ikx ϕ(x) (3.45)
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and its inverse

ϕ(x) =

∫
d4k

(2π)4
eikx ϕ̃(k) . (3.46)

Since ϕ(x) is hermitian, ϕ̃(k) obeys ϕ̃†(k) = ϕ̃(−k). We now have

U(Λ)−1ϕ̃(k)U(Λ) =

∫
d4x e−ikx U(Λ)−1ϕ(x)U(Λ)

=

∫
d4x e−ikx ϕ(Λ−1x)

=

∫
d4y e−ikΛy ϕ(y)

=

∫
d4y e−i(Λ

−1k)y ϕ(y)

= ϕ̃(Λ−1k) . (3.47)

The third equality follows from setting x = Λy, and recalling that |det Λ| = 1. The fourth
follows from kΛy = kµΛµ

νyν = Λµ
νkµyν = (Λ−1)νµk

µyν = (Λ−1k)νyν . The fifth follows from
eq. (3.45) with k → Λ−1k. Next we note that the usual mode expansion is equivalent to

ϕ̃(k) = 2πδ(k2+m2)
[
θ(k0)a(k) + θ(−k0)a†(−k)

]
. (3.48)

We can see this by plugging eq. (3.48) into eq. (3.46) and carrying out the integral over k0.
For positive k0, we then have

2πδ(k2+m2)a(k) = ϕ̃(k) . (3.49)

Making an (orthochronous) Lorentz transformation, we have

2πδ(k2+m2)U(Λ)−1a(k)U(Λ) = U(Λ)−1ϕ̃(k)U(Λ)

= ϕ̃(Λ−1k)

= 2πδ((Λ−1k)2+m2)a(Λ−1k)

= 2πδ(k2+m2)a(Λ−1k) . (3.50)

The third equality follows from eq. (3.49) with k → Λ−1k (note that (Λ−1k)0 is positive if
k0 is positive since Λ is orthochronous), and the fourth from (Λ−1k)2 = k2. Matching the
coefficients of the delta function on the LHS and final RHS of eq. (3.50) then yields

U(Λ)−1a(k)U(Λ) = a(Λ−1k) , (3.51)

with k0 positive. The hermitian conjugate of eq. (3.51) is

U(Λ)−1a†(k)U(Λ) = a†(Λ−1k) . (3.52)

Finally, we have

U(Λ)a†(k1) . . . a
†(kn)|0〉 = U(Λ)a†(k1)U(Λ)−1 . . . U(Λ)a†(kn)U(Λ)−1U(Λ)|0〉

= a†(Λk1) . . . a
†(Λkn)|0〉 , (3.53)

where we used eq. (3.52) and U(Λ)|0〉 = |0〉.
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3.4) a) T (δa) = I − iδaµP
µ and T (δa)−1 = I + iδaµP

µ, so

T (δa)−1ϕ(x)T (δa) = ϕ(x) − iδaµ[ϕ(x), Pµ] . (3.54)

Also, by Taylor expansion,

ϕ(x− a) = ϕ(x) − δaµ∂
µϕ(x) . (3.55)

Matching the coefficients of δaµ yields

[ϕ(x), Pµ] = 1
i ∂
µϕ(x) . (3.56)

b) Setting µ = 0 and recalling that P 0 = H and ∂0 = −∂0 = ∂/∂t, we get iϕ̇ = [ϕ,H].

c) H = 1
2

∫
d3y [Π2 +(∇ϕ)2 +m2ϕ2]. Since H is time independent, we can take y0 = x0. Then

[ϕ(x),H] = 1
2

∫
d3y [ϕ(x),Π2(y)]

= 1
2

∫
d3y

(
[ϕ(x),Π(y)]Π(y) + Π(y)[ϕ(x),Π(y)]

)

= 1
2

∫
d3y

(
iδ3(x − y)Π(y) + Π(y)iδ3(x − y)

)

= i

∫
d3y δ3(x − y)Π(y)

= iΠ(x) . (3.57)

Combining with our result from part (b), we find Π = ϕ̇. Next,

[Π(x),H] = 1
2

∫
d3y [Π(x),∇iϕ(y)∇iϕ(y) +m2ϕ2(y)]

= 1
2

∫
d3y

(
∇i
y[Π(x), ϕ(y)]∇iϕ(y) + ∇iϕ(y)∇i

y[Π(x), ϕ(y)]

+m2[Π(x), ϕ(y)]ϕ(y) +m2ϕ(y)[Π(x), ϕ(y)]
)

= −i
∫
d3y

(
∇i
yδ

3(x − y)∇iϕ(y) +m2δ3(x− y)ϕ(y)
)

= −i
∫
d3y

(
−δ3(x − y)∇2ϕ(y) +m2δ3(x − y)ϕ(y)

)

= −i(−∇2 +m2)ϕ(x) . (3.58)

The Heisenberg equation for Π, [Π,H] = iΠ̇, then yields Π̇ = −(−∇2 +m2)ϕ. Since Π = ϕ̇,
this is equivalent to ϕ̈ = −(−∇2 +m2)ϕ, which is the Klein-Gordon equation.

d) We have

[ϕ(x),P] = −
∫
d3y [ϕ(x),Π(y)]∇ϕ(y)

= −i
∫
d3y δ3(x − y)∇ϕ(y)

= −i∇ϕ(x) , (3.59)
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which agrees with eq. (3.56).

e) We have

P = −
∫
d3xΠ(x)∇ϕ(x)

= −
∫
d̃k d̃k

′
d3x

(
−iω a(k)eikx + iω a†(k)e−ikx

) (
+ik′ a(k′)eik

′x − ik′ a†(k′)e−ik
′x
)

= −(2π)3
∫
d̃k d̃k

′ [
δ3(k − k′)(−ωk′)

(
a†(k)a(k′)e−i(ω−ω

′)t + a(k)a†(k′)e+i(ω−ω
′)t
)

+ δ3(k + k′)(+ωk′)
(
a(k)a(k′)e−i(ω+ω′)t + a∗(k)a∗(k′)e+i(ω+ω′)t

)

= 1
2

∫
d̃k k

[
a†(k)a(k) + a(k)a†(k) + a(k)a(−k)e−2iωt + a†(k)a†(−k)e+2iωt

]
. (3.60)

Note that the third term, k a(k)a(−k)e−2iωt, is odd under k ↔ −k, and hence vanishes when
integrated over d̃k; the same is true of its hermitian conjugate (the fourth term). Also, in the
second term, we can write aa† = a†a+ constant; the constant term, after being multiplied by
k, also vanishes when integrated over d̃k. We therefore get

P =

∫
d̃k k a†(k)a(k) , (3.61)

which is just what we expect.

3.5) a) δS =
∫
d4x (+∂2ϕ−m2ϕ)δϕ† + h.c. after integrating by parts; the coefficients of both δϕ

and δϕ† must vanish.

b) Π ≡ ∂L/∂ϕ̇ = ϕ̇†, Π† ≡ ∂L/∂ϕ̇† = ϕ̇, H = Πϕ̇+ Π†ϕ̇† − L = Π†Π + ∇ϕ†∇ϕ+m2ϕ†ϕ.

c) Following the text, we get a(k) = i
∫
d3x e−ikx

↔
∂0 ϕ(x). Then we note that exchanging

ϕ↔ ϕ† is equivalent to a(k) ↔ b(k), and so b(k) = i
∫
d3x e−ikx

↔
∂0ϕ

†(x).

d) This is straightforward but tedious; the answer is the expected one: [a, a] = [b, b] = [a, b†] =
[a†, b] = 0, [a, a†] = [b, b†] ∼ δ.

e) Again, straightforward but tedious, just like the derivation in the text; the final result is

H =

∫
d̃k ω

[
a†(k)a(k) + b†(k)b(k)

]
+ (2E0 − Ω0)V , (3.62)

with E0 = 1
2(2π)−3

∫
d3k ω; each set of oscillators (a and b) contributes E0V to the zero-point

energy.
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4 The Spin-Statistics Theorem

4.1) We want to evaluate the Lorentz-invariant integral
∫
d̃k eik(x−x

′), where (x − x′)2 ≡ r2 > 0.
There is then a frame where t′ = t, and we work in that frame. Then we have

∫
d̃k eik(x−x

′) =

∫
d3k

(2π)32ω
eik·(x−x′)

=
2π

2(2π)3

∫ ∞

0

dk k2

ω

∫ +1

−1
d cos θ eikr cos θ

=
1

8π2

∫ ∞

0

dk k2

ω

2 sin(kr)

kr

=
1

4π2r

∫ ∞

0
dk

k sin(kr)

(k2 +m2)1/2

=
1

4π2r
mK1(mr) , (4.16)

where K1(z) is a modified Bessel function. As z → 0, zK1(z) → 1, and so as m → 0, the
right-hand side of eq. (4.16) becomes 1/4π2r2.
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5 The LSZ Reduction Formula

5.1) From our results in solution 3.5c, and taking hermitian conjugates as well, we have

a(k) = i

∫
d3x e−ikx

↔
∂0ϕ(x) ,

b(k) = i

∫
d3x e−ikx

↔
∂0ϕ

†(x) ,

a†(k) = −i
∫
d3x e+ikx

↔
∂0ϕ

†(x) ,

b†(k) = −i
∫
d3x e+ikx

↔
∂0ϕ(x) , (5.28)

Following the analysis in the text, this yields the following replacements inside the time-
ordered product:

a1′(+∞) → i

∫
d4x′1 e

−ik′
1
x′
1(−∂2

1′ +m2)ϕ(x′1) ,

b2′(+∞) → i

∫
d4x′2 e

−ik′
2
x′
2(−∂2

2′ +m2)ϕ†(x′2) ,

a†1(−∞) → i

∫
d4x1 e

+ik1x1(−∂2
1 +m2)ϕ†(x1) ,

b†2(−∞) → i

∫
d4x2 e

+ik2x2(−∂2
2 +m2)ϕ(x2) . (5.29)

We see that outgoing a particles and incoming b particles result in a ϕ, and that outgoing b
particles and incoming a particles result in a ϕ†. Outgoing particles get a phase factor with
a plus sign in the exponent, and incoming particles get a phase factor with a minus sign in
the exponent.
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6 Path Integrals in Quantum Mechanics

6.1) a) We wish to perform the integral

IN ≡
N∏

j=0

∫
dpj
2π

eipjaj e−cp
2
j
/2 , (6.24)

where aj ≡ qj+1 − qj ≡ q̇jδt and c ≡ iδt/m. The result is

IN =
N∏

j=0

e−a
2
j
/2c

(2πc)1/2

=

(
m

2πiδt

)(N+1)/2

exp

(
iδt
∑

j

1
2mq̇

2
j

)
. (6.25)

Therefore Dq = C
∏N
j=1 dqj with C = (m/2πiδt)(N+1)/2 .

b) We now have

〈q′′, t′′|q′, t′〉 =

(
m

2πiδt

)(N+1)/2 N∏

k=1

dqk exp

(
im

2δt

N∑

j=0

(qj+1 − qj)
2
)

=

(
1

2πc

)(N+1)/2 N∏

k=1

dqk exp

(
−

N∑

j=0

(qj+1 − qj)
2

2c

)
. (6.26)

The integral over q1 is
∫
dq1 e

−(q2−q1)2/2ce−(q1−q0)2/2c =
(

1
2 (2πc)

)1/2
e−(q2−q0)2/4c . (6.27)

The integral over q2 is now
∫
dq2 e

−(q3−q2)2/2ce−(q2−q0)2/4c =
(

2
3 (2πc)

)1/2
e−(q3−q0)2/6c . (6.28)

In general, the integral over qN is
∫
dqN e−(qN+1−qN )2/2ce−(qN−q0)2/2Nc =

(
N
N+1(2πc)

)1/2
e−(qN+1−q0)2/2(N+1)c . (6.29)

Therefore we have

N∏

k=1

dqk exp

(
−

N∑

j=0

(qj+1 − qj)
2

2c

)
=
(

1
N+1

)1/2(
2πc

)N/2
e−(qN+1−q0)2/2(N+1)c , (6.30)

and so

〈q′′, t′′|q′, t′〉 =

(
1

2πc(N+1)

)1/2
e−(qN+1−q0)2/2(N+1)c

=

(
m

2πi(t′′−t′)

)1/2
eim(q′′−q′)2/2(t′′−t′) , (6.31)
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where we used c = iδt/m and (N+1)δt = t′′−t′ to get the second line. The exponent must be
dimensionless, and since 〈q′′|q′〉 = δ(q′′ − q′), the prefactor must have dimensions of inverse
length; therefore

〈q′′, t′′|q′, t′〉 =

(
m

2πih̄(t′′−t′)

)1/2
eim(q′′−q′)2/2h̄(t′′−t′) . (6.32)

c) Let T = t′′ − t′; we have H = 1
2mP

2, and so

〈q′′, t′′|q′, t′〉 = 〈q′′|e−iHT |q′〉

=

∫ +∞

−∞
dp 〈q′′|e−iHT |p〉〈p|q′〉

=

∫ +∞

−∞
dp 〈q′′|p〉〈p|q′〉 e−i(p2/2m)T

=

∫ +∞

−∞
dp

eipq
′′

√
2π

e−ipq
′

√
2π

e−i(p
2/2m)T

=

∫ +∞

−∞

dp

2π
eip(q

′′−q′)−i(T/m)p2/2

=

(
m

2πiT

)1/2
eim(q′′−q′)2/2T , (6.33)

which agrees (as it should!) with eq. (6.31).
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7 The Path Integral for the Harmonic Oscillator

7.1) Setting t′ = 0 for notational convenience, we have

G(t) =

∫ +∞

−∞

dE

2π

e−iEt

− E2 + ω2 − iǫ

=

∫ +∞

−∞
dE

−e−iEt/2π
(E − (ω−iǫ))(E + (w−iǫ)) (7.19)

Think of E as a complex variable. If t > 0, we can add to eq. (7.19) an integral along an
arc at infinity in the lower half complex E-plane, since e−iEt vanishes on this arc. This
produces a closed contour that encircles the pole at E = ω − iǫ in a clockwise direction.
The residue of this pole is (−e−i(ω−iǫ)t/2π)/(2(ω−iǫ)) → −e−iωt/4πω as ǫ → 0. By the
residue theorem, the value of the integral is −2πi times this residue. Similarly, if t < 0,
we can add an arc at infinity in the upper-half plane. This produces a closed contour that
encircles the pole at E = −(ω−iǫ) in a counterclockwise direction. The residue of this pole is
(−ei(ω−iǫ)t/2π)/(−2(ω−iǫ)) → eiωt/4πω as ǫ → 0. By the residue theorem, the value of the
integral is +2πi times this residue. Combining these two cases, we have

G(t) = i
2ωe

−iω|t| . (7.20)

7.2) We wish to show that G(t), as given by eq. (7.20), obeys G̈+ ω2G = δ(t). We first note that
(d/dt)|t| = sign t and (d/dt) sign t = 2δ(t). We then have

Ġ(t) = 1
2e

−iω|t| sign(t) , (7.21)

and

G̈(t) = −1
2 iωe

−iω|t| sign2(t) + e−iω|t|δ(t)

= −1
2 iωe

−iω|t| + δ(t)

= −ω2G(t) + δ(t) . (7.22)

7.3) a) Q̇ = i[H,Q] = i[12P
2, Q] = P and Ṗ = i[H,P ] = i[12ω

2Q2, P ] = −ω2Q. The solution is

Q(t) = Q cosωt+ 1
ωP sinωt

P (t) = P cosωt− ωQ sinωt . (7.23)

b) Q = 1√
2ω

(a† + a) and P = i
√

ω
2 (a† − a); this is a standard result in quantum mechanics

(with h̄ = m = 1). Plugging these into eq. (7.23) and simplifying, we find

Q(t) = 1√
2ω

(
a†e+iωt + ae−iωt

)
,

P (t) = i
√

ω
2

(
a†e+iωt − ae−iωt

)
. (7.24)
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c) Assume t1 > t2. Then we have

〈0|TQ(t1)Q(t2)|0〉 = 〈0|Q(t1)Q(t2)|0〉
= 1

2ω 〈0|(a†e+iωt1 + ae−iωt1)(a†e+iωt2 + ae−iωt2)|0〉
= 1

2ω e
−iωt1e+iωt2〈0|aa†|0〉

= 1
2ω e

−iω(t1−t2) . (7.25)

Of course, for t1 < t2, we have 〈0|TQ(t1)Q(t2)|0〉 = 〈0|Q(t2)Q(t1)|0〉 = 1
2ω e

−iω(t2−t1). Com-
paring with eq. (7.20), we see that 〈0|TQ(t1)Q(t2)|0〉 = 1

iG(t1 − t2).

We can similarly analyze the case of four Q’s; for t1 > t2 > t3 > t4, we have

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉
= 1

(2ω)2 e
−iω(t1−t4)〈0|a(a†e+iωt2 + ae−iωt2)(a†e+iωt3 + ae−iωt3)a†|0〉

= 1
(2ω)2 e

−iω(t1−t4)[e−iω(t3−t2)〈0|aa†aa†|0〉 + e−iω(t2−t3)〈0|aaa†a†|0〉]
= 1

(2ω)2
e−iω(t1−t4)[e−iω(t3−t2) + 2e−iω(t2−t3)]

= 1
(2ω)2 [e−iω(t1−t2)e−iω(t3−t4) + e−iω(t1−t3)e−iω(t2−t4) + e−iω(t1−t4)e−iω(t2−t3)]

= 1
i2 [G(t1−t2)G(t3−t4) +G(t1−t3)G(t2−t4) +G(t1−t4)G(t2−t3)] . (7.26)

Other time-orderings follow by relabeling.

7.4) Eq. (7.10) reads

〈0|0〉f = exp

[
i

2

∫ +∞

−∞

dE

2π

f̃(E)f̃ (−E)

− E2 + ω2 − iǫ

]
. (7.27)

In general, if A = exp(iB), then |A|2 = exp(−2 ImB). Since f(t) is real, its Fourier transform
f̃(E) obeys f̃∗(E) = f̃(−E); therefore f̃(E)f̃ (−E) = |f̃(E)|2, which is purely real. We then
use Im 1/(x−iǫ) = ǫ/(x2+ǫ2); as ǫ→ 0, this becomes πδ(x). Thus we have

|〈0|0〉f |2 = exp

[
−1

2

∫ +∞

−∞
dE |f̃(E)|2 δ(−E2+ω2)

]
. (7.28)

Using δ(−E2+ω2) = δ(E2−ω2) = 1
2ω [δ(E−ω) + δ(E+ω)], and |f̃(E)|2 = |f̃(−E)|2, we get

|〈0|0〉f |2 = exp
[
− 1

2ω |f̃(ω)|2
]
. (7.29)
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8 The Path Integral for Free Field Theory

8.1) (−∂2
x +m2)eikx = (k2 +m2)eikx, and (k2 +m2)/(k2 +m2 − iǫ) → 1 as ǫ→ 0. The remaining

integral yields δ4(x−x′).

8.2) The first line of eq. (8.13) follows immediately from the solution to problem 7.1. To get the
second term on the second line of eq. (8.13) into the form shown, we replace the integration
variable k with −k.

8.3) Set x′ = 0 for notational convenience. Then (−∇2 +m2)e±ikx = (k2 +m2)e±ikx = ω2e±ikx.
Also, ∂0[iθ(t)e

−iωt] = [iδ(t) + ωθ(t)]e−iωt = iδ(t) + ωθ(t)e−iωt, and so (∂2
0 + ω2)[iθ(t)e−iωt] =

iδ̇(t) + ωδ(t)e−iωt = iδ̇(t) + ωδ(t). Similarly, (∂2
0 + ω2)[iθ(−t)e+iωt] = −iδ̇(t) + ωδ(t). Doing

the integral over k, we find

(−∂2 +m2)
[
iθ(t)

∫
d̃k eikx

]
= +iδ̇(t)C(r) + 1

2δ(t)δ
3(x) ,

(−∂2 +m2)
[
iθ(−t)

∫
d̃k e−ikx

]
= −iδ̇(t)C(r) + 1

2δ(t)δ
3(x) , (8.20)

where C(r) is defined in eq. (4.12). Adding, we get

(−∂2 +m2)
[
iθ(t)

∫
d̃k eikx + iθ(−t)

∫
d̃k e−ikx

]
= δ(t)δ3(x) . (8.21)

8.4) For t1 > t2, we have

〈0|Tϕ(x1)ϕ(x2)|0〉 =

∫
d̃k1 d̃k2 〈0|

(
a(k1)e

ik1x1 + a†(k1)e
−ik1x1

)

×
(
a(k2)e

ik2x2 + a†(k2)e
−ik2x2

)
|0〉

=

∫
d̃k1 d̃k2 e

i(k1x1−k2x2) 〈0|a(k1)a
†(k2)|0〉

=

∫
d̃k1 d̃k2 e

i(k1x1−k2x2) (2π)3 2ω2 δ
3(k1 − k2)

=

∫
d̃k1 d

3k2 e
i(k1x1−k2x2) δ3(k1 − k2)

=

∫
d̃k1 e

ik1(x1−x2) . (8.22)

Obviously, if t2 > t1, we swap 1 and 2. This yields the last line of eq. (8.15).

8.5) For x0 > y0, we must close the contour in the lower-half k0 plane. The result will vanish if
both poles are above the real k0 axis, so this is the prescription that yields ∆ret(x− y). We
can implement this prescription via

∆ret(x− y) =

∫
d4k

(2π)4
eik(x−y)

−(k0−iǫ)2 + k2 +m2

=

∫
d4k

(2π)4
eik(x−y)

k2 +m2 + 2ik0ǫ

=

∫
d4k

(2π)4
eik(x−y)

k2 +m2 + i sign(k0)ǫ
, (8.23)
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where the last line follows because only the sign of the infinitesimal term matters (and not
its magnitude). Similarly,

∆adv(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 +m2 − i sign(k0)ǫ
. (8.24)

8.6) See the solution to problem 7.4 for more details. We use

1

x− iǫ
=

x

x2 + ǫ2
+

iǫ

x2 + ǫ2

= P
1

x
+ iπδ(x) , (8.25)

where P denotes the principal part. We note that J̃(k)J̃(−k) = |J̃(k)|2 is real, and so

ReW0(J) =
1

2

∫
d4k

(2π)4
|J̃(k)|2 P 1

k2 +m2
,

ImW0(J) =
1

2

∫
d4k

(2π)4
|J̃(k)|2 πδ(k2 +m2)

= 1
2

∫
d̃k |J̃(k)|2 . (8.26)

8.7) This is a straightforward generalization; the final result is

Z0(J
†, J) = exp

[
i

∫
d4x d4x′ J†(x)∆(x− x′)J(x′)

]
. (8.27)

The generalization of eq. (8.14) is

〈0|Tϕ(x1) . . . ϕ
†(y1) . . . |0〉 =

1

i

δ

δJ†(x1)
. . .

1

i

δ

δJ(y1)
. . . Z0(J

†, J)
∣∣∣
J†=J=0

. (8.28)

This yields

〈0|Tϕ(x1)ϕ(x2)|0〉 = 0 ,

〈0|Tϕ†(y1)ϕ
†(y2)|0〉 = 0 ,

〈0|Tϕ(x1)ϕ
†(y2)|0〉 = 1

i∆(x1 − y2) . (8.29)

From the mode expansions, ϕ ∼ a+b† and ϕ† ∼ a†+b, and the fact that we can get a nonzero
result for 〈0| . . . |0〉 only if . . . contains aa† or bb†, we see that 〈0|ϕϕ|0〉 and 〈0|ϕ†ϕ†|0〉 must
vanish, and that 〈0|ϕϕ†|0〉 is the same as in the case of a real field. The generalization of
eq. (8.17) is then

〈0|Tϕ(x1) . . . ϕ(xn)ϕ
†(y1) . . . ϕ

†(yn)|0〉 =
1

in

∑

perms

∆(x1−yi1) . . .∆(xn−yin) , (8.30)

where the sum is over permutations of the yi’s. The result vanishes if the number of ϕ’s does
not equal the number of ϕ†’s.
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8.8) This is a straightforward generalization of the result for a harmonic oscillator. If we put the
system in a box (with, say, periodic boundary conditions), then the momentum is discrete,
and we can write ϕ(x) =

∑
k ϕ̃ke

ik·x, and similarly for Π(x); we take t = 0. Then

H = 1
2

∑

k

[
Π̃kΠ̃−k + (k2+m2)ϕ̃kϕ̃−k

]
, (8.31)

which is just a sum of individual oscillators labeled by k, with ωk = (k2+m2)1/2. Thus the
ground-state wave function is just a product of the individual wave functions,

ψ ∝
∏

k

exp
(
−1

2ωkÃkÃ−k

)
. (8.32)

We can replace the product with a sum in the exponent; in the limit of infinite box size,∑
k → ∫

d3k/(2π)3, which yields eq (8.19).
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9 The Path Integral for Interacting Field Theory

9.1) See the figures in the text.

9.2) a) The vertex joins four line segments. The vertex factor is (4!)(i)(−λ/24) = −iλ.

b) E = 0, V = 1:

S = 23

E = 0, V = 2:

S = 24 S = 2 × 4!

E = 2, V = 0:

S = 2

E = 2, V = 1:

S = 22

E = 2, V = 2:

S = 23 S = 2 × 3! S = 23

E = 4, V = 1:

S = 4!

E = 4, V = 2:

S = 24 S = 2 × 3!

There are no diagrams with E odd, since it is impossible to draw such a diagram when the
vertices connect an even number of lines.

c) Since there is no diagram with a single source, the VEV of ϕ vanishes. (For another
explanation, see section 23.)
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9.3) a) The vertex joins four line segments, two with arrows pointing towards the vertex, and two
with arrows pointing away from the vertex; this is because the interaction term involves two
ϕ’s and two ϕ†’s. The vertex factor is (2!)(2!)(i)(−λ/4) = −iλ.

b) E = 0, V = 1:

S = 2

E = 0, V = 2:

S = 2 S = 23

E = 2, V = 0:

S = 1

E = 2, V = 1:

S = 1

E = 2, V = 2:

S = 1 S = 2 S = 1

E = 4, V = 1:

S = 22

E = 4, V = 2:

S = 23 S = 2 S = 2 S = 2
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9.4) a) expW (g, J) is the path integral for ϕ3 theory in d = 0 spacetime dimensions, but without
the prefactor of i in the exponent. (This means we are working in d = 0 euclidean space-
time dimensions; see section 29.) In the Feynman-diagram expansion, each propagator is
(2π)−1/2

∫+∞
−∞ dx e−x

2/2x2 = 1, each vertex is g, and each source is J . Only the symmetry

factor of each diagram is nontrivial. The sum rule CV,E =
∑
I

1
SI

follows immediately.

b) We expand egx
3/6+Jx in powers of g out to g4, and in powers of J out to J5; the J5 term

is needed for part (d). Then, odd powers of x integrate to zero, and even powers x2n to
(2n−1)!!. The result is

eW (g,J) = 1 + ( 5
24g

2 + 385
1152g

4) + (1
2g + 35

48g
3)J + (1

2 + 35
48g

2 + 5005
2304g

4)J2

+ ( 5
12g + 385

288g
3)J3 + (1

8 + 35
64g

2 + 25025
9216 g

4)J4

+ ( 7
48g + 1001

1152g
3)J5. (9.42)

Taking the logarithm, we find

W (g, J) = ( 5
24g

2 + 5
16g

4) + (1
2g + 5

8g
3)J + (1

2 + 1
2g

2 + 25
16g

4)J2

+ (1
6g + 2

3g
3)J3 + (1

8g
2 + g4)J4 + 1

8g
3J5. (9.43)

It is straightforward to check that the symmetry factors given for the diagrams satisfy the
sum rule.

c) This follows immediately from the discussion of tadpole cancellation in the text.

d) From eq. (9.43), we have

∂
∂J W (g, J+Y )

∣∣∣
J=0

= (1
2g + 5

8g
3) + (1 + g2 + 25

8 g
4)Y + (1

2g + 2g3)Y 2

+ (1
2g

2 + 4g4)Y 3 + 5
8g

3Y 4. (9.44)

Setting Y = a1g + a3g
3 and setting the result equal to zero, we get

0 = (1
2 + a1)g + (5

8 + a1 + 1
2a

2
1 + a3)g

3 +O(g5). (9.45)

The solution is a1 = −1
2 and a3 = −1

4 . Setting Y = −1
2g − 1

4g
3, we get

W (g, J+Y ) = ( 1
12g

2 + 5
48g

4) + (1
2 + 1

4g
2 + 5

8g
4)J2

+ (1
6g + 5

12g
3)J3 + (1

8g
2 + 11

16g
4)J4, (9.46)

where we have dropped the J5 term, since it receives a contribution from the uncomputed
J6 terms in W (g, J). It is straightforward to check that the symmetry factors given for the
diagrams without tadpoles satisfy the sum rule.
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9.5) a) Follows implicitly from the analysis in section 3, but can be shown directly by writing the
time derivatives as commutators with H0, and working them out.

b) Follows immediately from eqs. (9.33) and (9.34). U(t) is unitary because it is the product
of two manifestly unitary operators.

c) i ddtU(t) = eiH0t(−H0+H)e−iHt = eiH0tH1e
−iHt = (eiH0tH1e

−iH0t)(eiH0te−iHt) = HI(t)U(t),
and it is obvious that U(0) = 1.

d) Consider, e.g., H1 ∝ ϕ(x, 0)n. Then HI(t) ∝ eiH0tϕ(x, 0)ne−iH0t. We can insert a factor of
1 = e−iH0teiH0t between each pair of fields, and then use eq. (9.34) to get HI(t) ∝ ϕI(x, t)

n.

e) Differentiating with respect to t inside the time-ordering symbol brings down a factor of
−iHI(t). Since t is the latest time, this factor of −iHI(t) is placed at the far left, QED. For
t < 0, we must use anti time ordering, where operators at later times are placed to the right

of those at earlier times.

f) Hermitian conjugation of a time-ordered product gives one that is anti time ordered. Then
the anti-time-ordered terms in U †(t1) cancel those in U(t2), leaving eq. (9.35). If t1 > t2, then
we must use anti time ordering.

g) U †(t2, t1) = U(t2, t1) follows immediately from the definition of U(t1, t2). U(t3, t1) =
U(t3, t2)U(t2, t1) is obvious from eq. (9.35) if t3 > t2 > t1. Otherwise, cancellations between
time-ordered and anti-time-ordered terms still yield this result.

h) Follows immediately from ϕ(x) = U †(t)ϕI(x)U(t) and U(t2, t1) = U(t2)U
†(t1).

i) Follows immediately from part (g).

j) U(−∞, 0)|0〉 = ei(1−iǫ)H0(−∞)e−iH(−∞)|0〉, and e−iHt|0〉 = |0〉 for any t. Then we write
|0〉 =

∑
n |n〉〈n|0〉, where the |n〉’s are the eigenstates of H0. With ǫ > 0, only the ground

state |∅〉 survives. A similar analysis gives 〈0|U †(∞, 0) = 〈0|∅〉〈∅|.
k) Follows immediately from the results of parts (h), (i), and (j).

l) The U ’s in part (k), if placed in time order, multiply out to U(∞,−∞).

m) Follows immediately from setting every ϕ(x) = 1 in eq. (9.39), and using 〈0|0〉 = 〈∅|∅〉 = 1.
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10 Scattering Amplitudes and the Feynman Rules

10.1) We expand the exponential to second order in HI , and then compute the correlation function
using free-field theory. The second-order term in the numerator of eq. (9.41) is then

1
2(ig/6)2

∫
d4y d4z 〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ

3(y)ϕ3(z)|0〉 (10.17)

(where we drop the I subscript and the slash through the zero for notational convenience).
Here we have set x′1 = x3 and x′2 = x4 to facilitate counting. It is also convenient to write
ϕ3(y) = ϕ(y1)ϕ(y2)ϕ(y3) with yi ≡ y, and similarly for ϕ3(z), again to facilitate keeping
track of terms. We have a total of 10 fields now, and there are (10−1)!! = 945 terms on the
right-hand side of Wick’s theorem. Terms where the xi’s are all paired with each other are
canceled by the expansion of the denominator in eq. (9.41). We also drop tadpoles, as per the
discussion in section 9, and terms that are not fully connected, as per the discussion in section
10. The terms remaining pair each xi with a yi or zi, and one yi with one zi. Given a pairing
of this type, there are 3! permutations of the yi’s that yield the same result (after setting
yi = y), and 3! permutations of the zi’s that yield the same result (after setting zi = z). Also,
two pairings that are identical except for the exchange of y and z yield the same result after
these variables are integrated. Pairings differ by whether x1 is paired with the same dummy
variable (y or z) as x2, or x3, or x4. Accounting for all these factors yields eq. (10.9).

10.2) In problem 9.3, we drew “charge” arrows that pointed away from J ’s and towards J†’s. After
taking functional derivatives with respect to J or J†, these arrows will point towards external
ϕ’s (and therefore away from the attached vertex) and away from external ϕ†’s (and therefore
towards the attached vertex). We saw in problem 5.1 that outgoing a and incoming b particles
result in a ϕ, and that incoming a and outgoing b particles result in a ϕ†. Therefore, incoming
a and outgoing b particles correspond to external lines with charge arrows pointed towards
the vertex, and outgoing a and incoming b particles correspond to external lines with charge
arrows pointed away from the vertex. On the other hand, incoming particles have momentum
arrows that point towards the vertex, and outgoing particles have momentum arrows that
point away from the vertex. Thus, we can use charge arrows for momenta if we include
minus signs with the momenta for incoming and outgoing b particles. Therefore, we have the
following Feynman rules (for tree-level processes):

1. For each incoming a particle, draw a line with an arrow pointed towards the vertex, and
label it with the a particle’s four-momentum, ki.

2. For each outgoing a particle, draw a line with an arrow pointed away from the vertex,
and label it with the a particle’s four-momentum, k′i.

3. For each incoming b particle, draw a line with an arrow pointed away from the vertex,
and label it with minus the b particle’s four-momentum, −ki.

4. For each outgoing b particle, draw a line with an arrow pointed towards the vertex, and
label it with minus the b particle’s four-momentum, −k′i.

5. The only allowed vertex joins four lines, two with arrows pointing towards it and two
with arrows pointing away from it. Using this vertex, join up all the external lines,
including extra internal lines as needed. In this way, draw all possible diagrams that are
topologically inequivalent.
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6. Assign each internal line its own four-momentum. Think of the four-momenta as flowing
along the arrows, and conserve four-momentum at each vertex. For a tree diagram, this
fixes the momenta on all the internal lines.

7. The value of a diagram consists of the following factors:

for each incoming or outgoing particle, 1;

for each vertex, −iλ;

for each internal line, −i/(k2 +m2 − iǫ).

8. The value of iT (at tree level) is given by a sum over the values of the contributing
diagrams.

10.3) The vertex joins one dashed and two solid lines, with one arrow pointing towards the vertex
and one away. The vertex factor is ig.

10.4) Using the method of problem 10.1, the vertex factor for three lines with arrows all pointing
towards the vertex can be determined from the free-field theory matrix element

〈0|ϕ∂µϕ∂µϕ|k1k2k3〉 = ∂2 ·∂3〈0|ϕ(x1)ϕ(x2)ϕ(x3)|k1k2k3〉
∣∣∣
x1=x2=x3=x

= ∂2 ·∂3

[
ei(k1x1+k2x2+k3x3) + 5 perms of ki’s

]
x1=x2=x3=x

= i2(2k2 ·k3 + 2k3 ·k1 + 2k1 ·k2)e
i(k1+k2+k3)x . (10.18)

The vertex factor is then 1
2 ig times the coefficient of the plane-wave factor on the right-hand

side of eq. (10.18). Since k1 +k2 +k3 = 0, we have (k1 +k2 +k3)
2 = 0, and therefore the factor

in parentheses on the the right-hand side of eq. (10.18) can be rewritten as −(k2
1 + k2

2 + k2
3).

The overall vertex factor, for three lines with arrows all pointing towards the vertex, is then
1
2 ig(k

2
1 + k2

2 + k2
3).

10.5) We take ϕ→ ϕ+ λϕ2. The lagrangian becomes

L = −1
2∂

µ(ϕ+λϕ2)∂µ(ϕ+λϕ2) − 1
2m

2(ϕ+λϕ2)2

= −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 − 2λϕ∂µϕ∂µϕ− λm2ϕ3 − 2λ2ϕ2∂µϕ∂µϕ− 1
2λ

2m2ϕ4 . (10.19)

Using our results from problem 10.4, the three-point vertex factor is

V3 = (−2iλ)(k2
1 + k2

2 + k2
3) − 6iλm2

= (−2iλ)[(k2
1 +m2) + (k2

2 +m2) + (k2
3 +m2)] , (10.20)

and the four-point vertex factor is

V4 = (−2iλ2)(2!)(k2
1 + k2

2 + k2
3 + k2

4) − 12iλm2

= (−4iλ2)[(k2
1 +m2) + . . .+ (k2

4 +m2)] + 4iλ2m2 , (10.21)

where all momentum arrows point towards the vertex. The factor of 2! in the first term in
V4 comes from matching external momenta with the two ϕ’s without derivatives.

Now consider ϕϕ → ϕϕ scattering. We have the diagrams of fig. 10.2, plus a four-point
vertex. In these diagrams, each three-point vertex connects two on-shell external lines with
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k2
i = −m2, and one internal line. In the s-channel diagram, the internal line has k2

i = −s;
thus each vertex in this diagram has the value V3 = (−2iλ)(−s + m2). For the t- and u-
channel diagrams, s is replaced by t or u. In the four-point diagram, all lines are external
and on-shell, and so the value of the four-point vertex is V4 = 4iλ2m2. We therefore have

iT = [(−2iλ)(−s +m2)]2
1

i

1

−s+m2
+ (s→ t) + (s → u) + 4iλ2m2

= 4iλ2[(−s+m2) + (−t+m2) + (−u+m2) +m2]

= 4iλ2(−s− t− u+ 4m2)

= 0 . (10.22)
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11 Cross Sections and Decay Rates

11.1) a) The vertex factor is 2ig, and so the tree-level amplitude for A→ BB is simply T = 2g. We
use eqs. (11.48) and (11.49) with n′ = 2, E1 = mA, and S = 2. We also use eq. (11.30) with
s = m2

A and |k′
1| given by eq. (11.3) with m1′ = m2′ = mB; this yields |k′

1| = 1
2(m2

A − 4m2
B)1/2.

The integral over dΩ simply yields 4π. So we find

Γ =
g2

8πmA

(
1 − 4m2

B

m2
A

)1/2
(11.60)

at tree level.

b) Everything is the same, except that now the vertex factor is ig rather than 2ig, and the
outgoing particles are not identical (one is an a particle and one is a b particle), so we have
S = 1 rather than 2. Therefore

Γ =
g2

16πmϕ

(
1 − 4m2

χ

m2
ϕ

)1/2
(11.61)

at tree level.

11.2) a) Let the incoming and outgoing electron four-momenta be p and p′, and the incoming and
outgoing photon four-momenta be k and k′. In the FT frame, we have

p = (m, 0, 0, 0) ,

k = (ω, 0, 0, ω) ,

k′ = (ω′, ω′ sin θ, 0, ω′ cos θ) , (11.62)

where θ ≡ θFT; p′ is fixed by momentum conservation to be p′ = p+ k − k′. We have

s = −(p+ k)2

= (m+ ω)2 − ω2

= m2 + 2mω , (11.63)

u = −(p− k′)2

= (m− ω′)2 − ω′2

= m2 − 2mω′ . (11.64)

b) We get a relation among θ, ω, and ω′ by using p′2 = −m2; this yields

−m2 = (p+ k − k′)2

= p2 + k2 + k′2 + 2p·k − 2p·k′ − 2k ·k′
= −m2 + 0 + 0 − 2mω + 2mω′ − 2ωω′(cos θ − 1) . (11.65)

We thus find

1 − cos θ = m

(
1

ω′ −
1

ω

)
. (11.66)



Mark Srednicki Quantum Field Theory: Problem Solutions 30

c) We use eqs. (11.63) and (11.64) in eq. (11.50) to get

|T |2 = 32π2α2

[
m2 +mω + ωω′

ω2
+
m2 −mω′ + ωω′

ω′2 − 2m2 +mω −mω′

ωω′

]
. (11.67)

Organizing terms by powers of m, we find

|T |2 = 32π2α2
[
m2
(

1

ω2
+

1

ω′2 − 2

ωω′

)
+ 2m

(
1

ω
− 1

ω′

)
+
ω

ω′ +
ω′

ω

]

= 32π2α2
[
(1 − cos θ)2 − 2(1 − cos θ) +

ω

ω′ +
ω′

ω

]

= 32π2α2
[
− sin2 θ +

ω

ω′ +
ω′

ω

]
. (11.68)

Now we use eq. (11.34),
dσ

dt
=

1

64πs|k1|2CM

|T |2 . (11.69)

From eq. (11.9), we have s|k1|2CM
= m2ω2. We can now get dσ/dΩFT from dσ/dt by computing

dt with s (and hence ω) held fixed. Solving eq. (11.66) for ω′ yields

ω′ =
mω

m+ ω(1 − cos θ)
, (11.70)

and so

dω′ =
mω2

[m+ ω(1 − cos θ)]2
d cos θ

=
ω′2

m
d cos θ . (11.71)

We have t = 2m2 − s− u = 2m(ω′ − ω). Therefore,

dt = 2mdω′

= 2ω′2 d cos θ

= (ω′2/π) dΩFT . (11.72)

Thus we have

dσ

dΩFT

=
ω′2

π

dσ

dt

=
1

64π2m2

ω′2

ω2
|T |2 . (11.73)

Combining this with eq. (11.68), we get eq. (11.51).

11.3) a) This follows immediately from eq. (11.53) and the definition of dLIPSn′(k), eq. (11.23).

b) The left-hand side is a tensor with two vector indices, and the only-four vector it can
depend on is k. The only tensors with two vector indices that can be built out of a single
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four-vector are gµν and kµkν , so the right-hand side must be a linear combination of these,
with scalar coefficients. By dimensional analysis, A and B are dimensionless. The only scalar
quantity that A and B could depend on is k2 = −m2, but since this is dimensionful, A and
B must be pure numbers.

c) For m1′ = m2′ = 0, we have |k′
1| = 1

2

√
s. We then use eq. (11.30); integrating over dΩCM

yields a factor of 4π.

d) Contracting eq. (11.55) with gµν , we get

∫
(k′1 ·k′2) dLIPS2(k) = (4A +B)k2 . (11.74)

Contracting eq. (11.55) with kµkν , we get

∫
(k ·k′1)(k ·k′2) dLIPS2(k) = (A+B)(k2)2 . (11.75)

The delta function in dLIPS2(k) enforces k′1+k
′
2 = k. We also have k′i

2 = −m′
i
2 = 0. Therefore

k ·k′1 = (k′1 + k′2) ·k′1 = k′1 ·k′2 and similarly k ·k′2 = k′1 ·k′2. Also, k2 = (k′1 + k′2)
2 = 2k′1 ·k′2.

Therefore k′1·k′2 = 1
2k

2 and (k·k′1)(k·k′2) = 1
4(k2)2. Using these in eqs. (11.74) and (11.75), and

then using eq. (11.56), we find 4A+B = 1/16π and A+B = 1/32π, which yields A = 1/48π
and B = 1/96π.

11.4) We have

TAA→AA = 0 ,

TAA→AB = 0 ,

TAA→BB = g2

[
1

m2
C − t

+
1

m2
C − u

]
,

TAA→BC = 0 ,

TAB→AB = g2

[
1

m2
C − s

+
1

m2
C − u

]
,

TAB→AC = 0 , (11.76)
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12 Dimensional Analysis with h̄ = c = 1

12.1) h̄c = 0.197327GeV fm.

12.2) mp = 0.93827GeV,
mn = 0.93957GeV,
mπ± = 0.13957GeV,
mπ0 = 0.13498GeV,
me = 0.51100 × 10−3 GeV,
mµ = 0.10566GeV,
mτ = 1.7770GeV.

12.3) By dimensional analysis, rp must be proportional to h̄c/mp. The proton is a blob of strongly
interacting quarks and gluons, and there is no small dimensionless parameter associated with
it; therefore we expect the constant of proportionality to be O(1). Our guestimate is then
rp ∼ h̄c/mp = 0.2 fm. The measured value is 0.875 fm.
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13 The Lehmann-Källén Form of the Exact Propagator

13.1) We start with eq. (13.12), take ∂/∂y0, and then set y0 = x0 to get

〈0|ϕ(x)ϕ̇(y)|0〉 =

∫
d̃k ik0 eik·(x−y) +

∫ ∞

4m2

ds ρ(s)

∫
d̃k ik0 eik·(x−y)

=
i

2

∫
d3k

(2π)3
eik·(x−y) +

i

2

∫ ∞

4m2

ds ρ(s)

∫
d3k

(2π)3
eik·(x−y)

=
i

2
δ3(x − y)

[
1 +

∫ ∞

4m2

ds ρ(s)

]
. (13.19)

Similarly, we take ∂/∂y0 of eq. (13.13) and set y0 = x0 to get

〈0|ϕ̇(y)ϕ(x)|0〉 = − i

2
δ3(x − y)

[
1 +

∫ ∞

4m2

ds ρ(s)

]
. (13.20)

Subtracting eq. (13.20) from eq. (13.19), we find

〈0|[ϕ(x), ϕ̇(y)]|0〉 = i δ3(x− y)

[
1 +

∫ ∞

4m2

ds ρ(s)

]
(13.21)

when y0 = x0. On the other hand, the conjugate momentum to the field ϕ is Π = ∂L/∂ϕ̇ =
Zϕϕ̇. The canonical commutation relations tells us that [ϕ(x),Π(y)] = iδ3(x − y) when
y0 = x0, and therefore that Zϕ[ϕ(x), ϕ̇(y)] = iδ3(x − y) when y0 = x0. Comparing with
eq. (13.21), we see that we have

Z−1
ϕ = 1 +

∫ ∞

4m2

ds ρ(s) . (13.22)

Note that this implies that Zϕ ≤ 1, and that Zϕ = 1 only if ρ(s) = 0.
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14 Loop Corrections to the Propagator

14.1) Starting with eq. (14.50), we have

∏
i Γ(αi)∏
iA

αi

i

=

∫ ∞

0
dt1 . . . dtn

∏

i

tαi−1
i exp

(
−∑iAiti

)
. (14.55)

Now we insert a factor of 1 =
∫∞
0 ds δ(s −∑iti) on the right-hand side, and then make the

change of variable ti = sxi. The delta function becomes δ(s−s∑ixi) = s−1δ(1−∑ixi). Then
we have
∏
i Γ(αi)∏
iA

αi
i

=

∫ ∞

0
dx1 . . . dxn δ(1 −∑ixi)

∏

i

xαi−1
i

∫ ∞

0
ds s−1+

∑
i
αi exp

(
−s∑iAixi

)
. (14.56)

The integral over s yields Γ(
∑
i αi)(

∑
iAixi)

−
∑

i
αi . The integrals over the xi’s, along with

the delta function, constitute the integral over dFn divided by (n−1)!. So we have

∏
i Γ(αi)∏
iA

αi

i

=
Γ(
∑
i αi)

(n−1)!

∫
dFn

∏
i x

αi−1
i

(
∑
i xiAi)

∑
i
αi
, (14.57)

which is equivalent to eq. (14.49).

14.2) We define Id ≡
∫
ddx e−x2

. In cartesian coordinates, Id =
∏d
i=1

∫+∞
−∞ dxi e

−x2
i = (

√
π)d = πd/2.

In spherical coordinates, Id = Ωd
∫∞
0 dr rd−1 e−r

2

. Let u = r2; then r dr = 1
2du, and we have

Id = 1
2Ωd

∫∞
0 duud/2−1 e−u = 1

2ΩdΓ(1
2d).

14.3) a) The integrand in eq. (14.52) is odd under q → −q, and so vanishes when integrated. The
left-hand side of eq. (14.53) is a two-index constant symmetric tensor, and so must equal
gµνA, where A is a Lorentz scalar. To determine A, we contract both sides with gµν ; since
gµνg

µν = δµ
µ = d, we find C2 = 1/d.

b) The result is a constant four-index completely symmetric tensor, and hence must equal
(gµνgρσ + gµρgσν + gµσgνρ)B. Contracting this with gµνgρσ , we get (d2 +d+d)B = d(d+2)B.
Therefore

∫
ddq qµqνqρqσf(q2) =

1

d(d+2)
(gµνgρσ + gµρgσν + gµσgνρ)

∫
ddq (q2)2f(q2) . (14.58)

14.4) We subtract eq. (14.43) from eq. (14.39), divide by α, and drop higher-order terms to get

0 = 1
2

∫ 1

0
dxD ln(D0/m

2) + (1
6κA + 1

12 )k2 + (κB + 1
12)m2

= 1
36 (3π

√
3 − 17)k2 + 1

6(π
√

3 − 6)m2 + (1
6κA + 1

12 )k2 + (κB + 1
12 )m2 . (14.59)

So we find κA = 1
6(14 − 3π

√
3) = −0.3874 and κB = 1

12 (11 − 2π
√

3) = 0.0098.

14.5) See section 31. From eq. (31.5), we have

Π(k2) =
λ

16π2

[
1

ε
+ 1

2 + ln(µ/m)

]
m2 −Ak2 −Bm2 +O(λ2) . (14.60)
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We see immediately that

A = O(λ2) ,

B =
λ

16π2

[
1

ε
+ 1

2 + ln(µ/m)

]
+O(λ2) . (14.61)

and that Π(k2) = 0 to O(λ).

14.6) The only difference is that the loop has a symmetry factor of S = 1 rather than S = 2, so
there is an extra factor of 2 in the loop correction, and hence in B; A is still zero at one loop.

14.7) a) Set Q = (2ω)−1/2(a† + a) and P = i(ω/2)1/2(a† − a), where [a, a†] = 1. Then H0 =
ω(a†a+ 1

2), and

H1 = 1
2(Z−1−1)P 2 + 1

2(Zω−1)ω2Q2 + λQ4

= λ
[
−1

2κAP
2 + 1

2κBQ
2 +Q4

]
+O(λ2) .

= 1
4λω

[
κA(a†−a)2 + κB(a†+a)2 + (a†+a)4

]
+O(λ2) . (14.62)

b) Using a|n〉 =
√
n |n−1〉, a†|n〉 =

√
n+1 |n+1〉, and a†a|n〉 = n|n〉, we find 〈1|Q|0〉 =

(2ω)−1/2, and

〈n′|(a†−a)2|n〉 =
√

(n+2)(n+1) δn′,n+2

− (2n+1) δn′,n

+
√
n(n−1) δn′,n−2 , (14.63)

〈n′|(a†+a)2|n〉 =
√

(n+2)(n+1) δn′,n+2

+ (2n+1) δn′,n

+
√
n(n−1) δn′,n−2 , (14.64)

〈n′|(a†+a)4|n〉 =
√

(n+4)(n+3)(n+2)(n+1) δn′,n+4

+ (4n+6)
√

(n+2)(n+1) δn′,n+2

+ (6n2+6n+3) δn′,n

+ (4n−2)
√
n(n−1) δn′,n+2

+
√
n(n−1)(n−2)(n−3) δn′,n+4 . (14.65)

We have in general that EN = εn+ 〈n|H1|n〉+O(λ2), where εn = (n+1
2)ω is the unperturbed

energy, and so

EΩ = 1
2ω + 1

4λω(−κA + κB + 3) +O(λ2) , (14.66)

EI = 3
2ω + 1

4λω(−3κA + 3κB + 15) +O(λ2) . (14.67)



Mark Srednicki Quantum Field Theory: Problem Solutions 36

For the states, we have in general that

|N〉 = |n〉 +
∑

n′ 6=n

〈n′|H1|n〉
εn′ − εn

|n′〉 +O(λ2) , (14.68)

and so

|Ω〉 = |0〉 + 1
4λ

[
κA

√
2 + κB

√
2 + 6

√
2

2
|2〉 +

√
24

4
|4〉
]

+O(λ2) , (14.69)

|I〉 = |1〉 + 1
4λ

[
κA

√
6 + κB

√
6 + 10

√
6

2
|3〉 +

√
120

4
|5〉
]

+O(λ2) . (14.70)

c) From eqs. (14.66) and (14.67), we see that requiring EI −EΩ ≡ ω fixes κA−κB = 6. Next,
we act on |Ω〉 with

√
2ω Q = a† + a; from eq. (14.69), we find

√
2ωQ|Ω〉 = |1〉 + 1

4λ

[
κA

√
2 + κB

√
2 + 6

√
2

2

(√
3 |3〉 +

√
2 |1〉

)

+

√
24

4

(√
5 |5〉 +

√
4 |3〉

)]
+O(λ2) . (14.71)

Using eq. (14.70), we find that

√
2ω 〈I|Q|Ω〉 = 1 + 1

4λ(κA + κB + 6) +O(λ2) . (14.72)

Requiring
√

2ω 〈I|Q|Ω〉 ≡ 1 fixes κA + κB = −6. Hence κA = 0 and κB = −6.

d) Using
iΠ(k2) = 1

2(−iλµ̃ε)1
i ∆̃(0) − i(Ak2 +Bm2) (14.73)

from section 30, with the substitutions m → ω and λ → 24λω3, we find that the self-energy
is

iΠ(k2) = 1
2 (−24iλω3)1

i ∆̃(0) − iλ(κAk
2 + κBω

2) +O(λ2) , (14.74)

where, after making the Wick rotation,

∆̃(0) = i

∫ +∞

−∞

dℓ

2π

1

ℓ2 + ω2

=
i

2ω
. (14.75)

Requiring Π′(−ω2) = 0 fixes κA = 0, and then requiring Π(−ω2) = 0 fixes κB = −6, as we
found in part (c). Agreement is required, as the conditions defining ω and the normalization
of Q are the same.
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15 The One-Loop Correction in Lehmann-Källén Form

15.1) a) We have Π(k2) = Πloop(k2)−Ak2−Bm2 +O(α2), and we fix A by requiring Π′(−m2) = 0.
To O(α), this condition yields A = Π′

loop(−m2). Eq. (15.15) then follows immediately from
Cauchy’s integral formula; see e.g.
http://mathworld.wolfram.com/CauchyIntegralFormula.html .

b) The right-hand side of eq. (14.32) is manifestly real if D is real and positive. As discussed
in the text, D can be negative only for k2 < −4m2; then the fractional power Dε/2 results in
a branch point.

c) At large |w|, Πloop(w)/(w + m2)2 ∼ |w|−1−ε/2, and so along an arc at |w| = R the line
integral becomes R−ε/2dθ, which vanishes as R→ ∞.

d) Above the cut, we have D = ei(π−ǫ)|D|, and below the cut, we have D = e−i(π−ǫ)|D|, where
ǫ (not to be confused with ε!) is a positive infinitesimal. Thus Dε/2 = eiπε/2|D| above the
cut, and Dε/2 = e−iπε/2|D| below the cut (where we have now taken ǫ to zero). We see that
the real parts match, and the imaginary parts have opposite sign; this implies eq. (15.17).

e) Eq. (15.18) follows immediately from eqs. (15.16) and (15.17). Note that there are three
overall minus signs: one from eq. (15.16), one from ds = −dw, and one from swapping the
limits of integration. Examining eq. (15.13), we see that the integrand in eq. (15.18) is simply
the O(α) contribution to πρ(s). [The s → s + iǫ prescription is implicit in eq. (15.18).] So
we conclude that, to O(α), A = − ∫∞4m2 ds ρ(s). Since Z−1

ϕ = 1 − A + O(α2), this verifies
Z−1
ϕ = 1 +

∫∞
4m2 ds ρ(s) to O(α).

Incidentally, you could try to carry out this integral over s with finite ε, then take the ε→ 0
limit, and hence get the value of κA. Doing this with Mathematica yields some horrible
expression in terms of hypergeometric functions for κA, but numerically it does agree with
our result in problem 14.4.

15.2) We start with the Cauchy integral formula for second derivative,

Π′′(k2) = 2!

∮
dw

2πi

Π(w)

(w − k2)3
, (15.20)

and follow the analysis above. The only difference is an extra minus sign from the denomi-
nator, and the result is eq. (15.19).
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16 Loop Corrections to the Vertex

16.1) See section 31. From eq. (31.8), we have

V4 = −(1 + C)λ+ 1
2λ

2[F (−s) + F (−t) + F (−u)] +O(λ3) , (16.16)

where

F (k2) =
1

16π2

[
2

ε
+

∫ 1

0
dx ln(µ2/D)

]
, (16.17)

and D = x(1−x)k2 +m2 − iε. We require V4 = −λ for s = 4m2 and t = u = 0; We find

F (0) =
1

16π2

[
2

ε
+ ln(µ2/m2)

]
,

F (−4m2) =
1

16π2

[
2

ε
+ ln(µ2/m2) + 2

]
, (16.18)

and so

C =
3λ

16π2

[
1

ε
+ ln(µ/m) + 1

3

]
+O(λ2) . (16.19)

16.2) We must be careful with symmetry factors. For aa→ aa, the contributing one-loop diagrams
are

+ crossed

The s-channel diagram has a symmetry factor of S = 2, while the t- and u-channel diagrams
have S = 1. So instead of eq. (16.16), we have

V4 = −(1 + C)λ+ λ2[12F (−s) + F (−t) + F (−u)] +O(λ3) , (16.20)

which results in

C =
5λ

16π2

[
1

ε
+ ln(µ/m) + 1

5

]
+O(λ2) . (16.21)
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17 Other 1PI Vertices

17.1) We have

x1(ℓ−k1)
2 + x2(ℓ+k2)

2 + x3(ℓ+k2+k3)
2 + x4ℓ

2

= ℓ2 + 2(−x1k1+x2k2+x3(k2+k3))ℓ+ x1k
2
1 + x2k

2
2 + x3(k2+k3)

2

= [ℓ+ (−x1k1+x2k2+x3(k2+k3))]
2

− (−x1k1+x2k2+x3(k2+k3))
2 + x1k

2
1 + x2k

2
2 + x3(k2+k3)

2

≡ q2 +D , (17.6)

where

D = −(−x1k1+x2k2+x3(k2+k3))
2 + x1k

2
1 + x2k

2
2 + x3(k2+k3)

2

= x1(1−x1)k
2
1 + x2(1−x2)k

2
2 + x3(1−x3)(k2+k3)

2

+ 2x1x2k1k2 + 2x1x3k1(k2+k3) − 2x2x3k2(k2+k3) . (17.7)

Next we use

2k1k2 = (k1+k2)
2 − k2

1 − k2
2 , (17.8)

2k1(k2+k3) = 2k1(−k1−k4)

= −(k1+k4)
2 − k2

1 + k2
4

= −(k2+k3)
2 − k2

1 + k2
4 , (17.9)

−2k2(k2+k3) = −(k2+k3)
2 − k2

2 + k2
3 (17.10)

to get

D = x1(1−x1−x2−x3)k
2
1 + x2(1−x2−x1−x3)k

2
2 + x3(1−x3−x1−x2)(k2+k3)

2

+ x1x2(k1+k2)
2 + x1x3k

2
4 + x2x3k

2
3

= x1x4k
2
1 + x2x4k

2
2 + x3x4(k2+k3)

2 + x1x2(k1+k2)
2 + x1x3k

2
4 + x2x3k

2
3 , (17.11)

QED.
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18 Higher-Order Corrections and Renormalizability

18.1) a) [L] = d and [γµ∂µ] = 1, so [Ψ] = [Ψ] = 1
2(d−1).

b) [gn] + 2n[Ψ] = d, so [gn] = d− n(d−1).

c) [gm,n] +m[ϕ] + 2n[Ψ] = d, and [ϕ] = 1
2 (d−2), so [gm,n] = d− 1

2m(d−2) − n(d− 1).

d) [gm,n] = 4 −m− 3n, so only [g1,1] = 0, and all the rest are negative; thus g1,1ϕΨΨ is the
only allowed interaction of this type for d = 4.
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19 Perturbation Theory to All Orders
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20 Two-Particle Elastic Scattering at One Loop

20.1) For m2 = 0, we have −D4 = 1/(x1x2s + x3x4t); we treat s and t as complex, and so ignore
any poles in the Feynman parameter integrand. We then have

∫
dF4

D4
= −3!

∫ 1

0
dx1

∫ 1−x1

0
dx3

∫ 1−x1−x3

0

dx2

x1x2s+ x3(1−x1−x2−x3)t

= −3!

∫ 1

0
dx3

∫ 1−x3

0
dx1

ln s− ln t+ lnx1 − lnx3

x1s− x3t

= −3!

∫ 1

0
dx3

∫ 1−x3

0

dx1

x3

ln(s/t) + ln(x1/x3)

(x1/x3)s− t
. (20.20)

Now let x1 = yx3; x1 < 1 − x3 ⇒ y < 1/x3 − 1, and so
∫
dF4

D4
= −3!

∫ 1

0
dx3

∫ 1/x3−1

0
dy

ln(s/t) + ln y

ys− t
. (20.21)

Note that y < 1/x3 − 1 is equivalent to x3 < 1/(1+y), so we can write
∫
dF4

D4
= −3!

∫ ∞

0
dy

∫ 1/(1+y)

0
dx3

ln(s/t) + ln y

ys− t

= −3!

∫ ∞

0
dy

1

1 + y

ln(s/t) + ln y

ys− t
. (20.22)

These are standard integrals:
∫ ∞

0

dy

(y + 1)(ys − t)
=

ln(−s/t)
s+ t

,

∫ ∞

0

dy ln y

(y + 1)(ys − t)
= − [ln(−s/t)]2

2(s + t)
. (20.23)

Using ln(−s/t) = ln(s/t) − iπ then yields eq. (20.17).

20.2) From eq. (20.2) with s = 4m2 and t = u = 0, we find

T1−loop = V2
3(4m

2)∆̃(−4m2) + 2V2
3(0)∆̃(0) + V4(4m

2, 0, 0) . (20.24)

So we just have to evaluate some Feynman parameter integrals. I will give only the results,
computed by Sam Pinansky:

∆̃(0) =
1

m2

[
1 + 1

12(11 − 2π
√

3)α
]
,

∆̃(−4m2) = − 1

3m2

[
1 + 1

36 (9 − 2π
√

3)α
]
,

V3(0) = g
[
1 + 1

6 (6 − π
√

3)α
]
,

V3(4m
2) = g

[
1 + 1

6 (8 − π
√

3)α
]
,

V4(4m
2, 0, 0) = − g2

m2

[
1
9(3 − 2π

√
3)α

]
, (20.25)

which yield

T1−loop =
5g2

3m2

[
1 + 1

180 (489 − 70π
√

3)α
]
. (20.26)
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21 The Quantum Action

21.1) This follows immediately from eqs. (21.12), (21.14), and (21.18).

21.2) a) If we make the change of integration variable specified by eq. (21.22) in eq. (21.2), we find
that it is equivalent to the replacement of eq. (21.23).

b) For notational convenience, treat the spacetime argument as part of the index. The
solution to δW/δJa = ϕa is called Jϕa. If we now take ϕa → Rabϕb, the solution is
Jϕb(R

−1)ba. To see this, let Kϕa ≡ Jϕb(R
−1)ba, so that Jϕb = KaRab, and compute δW/δKa =

(δW/δJb)(δJb/δKa) = (δW/δJb)Rab = ϕbRab = Rabϕb. So we let ϕa → Rabϕb and Jϕa →
Jϕc(R

−1)ca in eq. (21.20). The R matrices cancel out of the Jϕϕ term, and we saw in part
(a) that W (Jϕ) is invariant. So Γ(ϕ) is also invariant.

21.3) If we make the change of integration variable ϕ→ ϕ− ϕ̄ in eq. (21.24), we find

W (J ; ϕ̄) = W (J ; 0) −
∫
ddx Jϕ̄ . (21.28)

Taking δ/δJ(x) we find
δW (J ; ϕ̄)

δJ(x)
=
δW (J ; 0)

δJ(x)
− ϕ̄(x) . (21.29)

We use eq. (21.26) to identify the left-hand side of eq. (21.29) as ϕ(x), and rearrange to get

δW (J ; 0)

δJ(x)
= ϕ(x) + ϕ̄(x) . (21.30)

Let Jϕ;ϕ̄ be the solution of eq. (21.26). (It was called Jϕ in the problem, but this notation
is more useful.) In this notation, the solution of eq. (21.30) is Jϕ+ϕ̄;0. Since eq. (21.30) is
equivalent to eq. (21.26), we see that

Jϕ;ϕ̄ = Jϕ+ϕ̄;0 . (21.31)

Starting with eq. (21.25), we find

Γ(ϕ; ϕ̄) = W (Jϕ;ϕ̄; ϕ̄) −
∫
ddx Jϕ;ϕ̄ϕ

= W (Jϕ;ϕ̄; 0) −
∫
ddx Jϕ;ϕ̄(ϕ+ ϕ̄)

= W (Jϕ+ϕ̄;0; 0) −
∫
ddx Jϕ+ϕ̄;0(ϕ+ ϕ̄)

= Γ(ϕ+ϕ̄; 0) , (21.32)

where the second equality follows from eq. (21.28), the third from eq. (21.31), and the fourth
from eq. (21.20).
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22 Continuous Symmetries and Conserved Currents

22.1) In eq. (22.6) with µ = 0, we have ∂L/∂(∂0ϕa) = ∂L/∂ϕ̇a = Πa, and so j0 = Πaδϕa. Thus,
for y0 = x0, we have [ϕa(x), j

0(y)] = [ϕa(x),Πb(y)]δϕb(y) = iδ3(x−y)δabδϕb(y). Integrating
over d4y yields [ϕa(x), Q] on the left-hand side and iδϕb(x) on the right-hand side. Since Q
is time independent, our choice of y0 = x0 is justified.

22.2) Taking y0 = x0, we have [ϕa(x), T
0i(y)] = −[ϕa(x),Πb(y)]∇iϕb(y) = −iδ3(x−y)δab∇iϕb(y).

Integrating over d4y yields [ϕa(x), P
i] on the left-hand side and −i∇iϕa(x) on the right-

hand side. Since P i is time independent, our choice of y0 = x0 is justified. We also
have [ϕa(x), T

00(y)] = [ϕa(x),
1
2Πb(y)Πb(y)] = 1

2 [ϕa(x),Πb(y)]Πb(y) + 1
2Πb(y)[ϕa(x),Πb(y)] =

iδ3(x−y)δabΠb(y). Integrating over d4y yields [ϕa(x), P
0] on the left-hand side and iΠa(x) =

iϕ̇a(x) = −i∂0ϕa(x) on the right-hand side. Since P 0 is time independent, our choice of
y0 = x0 is justified.

22.3) a) We have, with y0 = x0,

[T 00(x), T 00(y)] = 1
2 [Πa(x)Πa(x),

1
2∇jϕa(y)∇jϕa(y) + V (ϕ(y))] − (x↔ y)

= −1
2 iΠa(x)[∇jϕa(y)∇j

y + ∂V (ϕ)/∂ϕa]δ
3(x−y)

−1
2 i[∇jϕa(y)∇j

y + ∂V (ϕ)/∂ϕa]δ
3(x−y)Πa(x) − (x↔ y) , (22.42)

[T 0i(x), T 00(y)] = −[Πa(x),
1
2∇jϕa(y)∇jϕa(y) + V (ϕ(y))]∇iϕa(x)

−Πa(x)∇i
x[ϕa(x),

1
2Πb(y)Πb(y)]

= i[∇jϕa(y)∇j
y + ∂V (ϕ)/∂ϕa]δ

3(x−y)∇i
xϕa(x)

−iΠa(x)Πa(y)∇i
xδ

3(x−y) , (22.43)

[T 0i(x), T 0j(y)] = [Πa(x)∇iϕa(x),Πb(y)]∇jϕb(y)

+Πb(y)∇j
y[Πa(x)∇iϕa(x), ϕb(y)]

= iΠa(x)∇i
xδ

3(x−y)∇jϕa(y)

−iΠa(y)∇j
yδ

3(x−y)∇iϕa(x) . (22.44)

b) If we integrate over d3x and d3y, we generate [H,H], [P i,H], and [P i, P j ], respectively.
The first of these vanishes (as it obviously must) because the x ↔ y term cancels the first
term after x and y become dummy integration variables. After some integrations by parts,
it is easy to see [P i, P j ] vanishes as well. The hardest is [P i,H]; we have

[P i,H] = i

∫
d3x [−∇2ϕa∇iϕa + (∂V/∂ϕa)∇iϕa + Πa∇iΠa]

= i

∫
d3x [∇jϕa∇i∇jϕa + (∂V/∂ϕa)∇iϕa + Πa∇iΠa]

= i

∫
d3x∇i[12∇jϕa∇jϕa + V (ϕ) + 1

2ΠaΠa]

= i

∫
d3x∇iT 00 . (22.45)
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This vanishes (assuming suitable boundary conditions at spatial infinity) because it is the
integral of a total derivative. This illustrates a useful general rule: since (as is easily checked)
[P i, ϕa(x)] = i∇iϕa(x) and [P i,Πa(x)] = i∇iΠa(x), any local function F of ϕa(x) and Πa(x)
and their spatial derivatives will obey

[P i, F (x)] = i∇iF (x) . (22.46)

Next let us define

Ci ≡
∫
d3x xiT 00 , (22.47)

Dij ≡
∫
d3x xiT 0j , (22.48)

so that

Ki = Ci − x0P i , (22.49)

J i = εijkDjk . (22.50)

Using eqs. (22.46) and (22.47), we have

[P i, Cj] = i

∫
d3x xj∇iT 00

= −i
∫
d3x (∇ixj)T 00

= −i
∫
d3x δijT 00

= −iδijH (22.51)

Using eq. (22.49) and [P i, P j ] = 0, we get [P i,Kj ] = −iδijH.

Now using eqs. (22.46) and (22.48), we have

[P i,Djk] = i

∫
d3x xj∇iT 0k

= −i
∫
d3x (∇ixj)T 0k

= −i
∫
d3x δijT 0k

= −iδijP k . (22.52)

Contracting with εljk and using eq. (22.50), we get [P i, J l] = −iεlikP k.
To see that [J l,H] = 0, we multiply eq. (22.43) by xj and integrate over d3x and d3y to
get [Dji,H]. Without the factor of xj, the result would be [P i,H], which vanishes; thus a
nonvanishing term can only result from an integration by parts that puts a ∇i

x on xj . Such
a term would be proportional to δij , and so vanishes when we contract with εlji to construct
J l.

To compute [H,Ki] = [H,Ci], we multiply eq. (22.42) by yi and integrate over d3x and d3y.
Without the factor of yi, the result would be [H,H], which vanishes; thus a nonvanishing
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term can only result from an integration by parts that puts a ∇i
y on yi. The relevant terms

yield

[H,Ci] = −1
2 i

∫
d3x d3y yi[Πa(x)∇jϕa(y) + ∇jϕa(y)Πa(x)]∇j

yδ
3(x−y)

= +1
2 i

∫
d3x d3y (∇j

yy
i)[Πa(x)∇jϕa(y) + ∇jϕa(y)Πa(x)]δ

3(x−y)

= +1
2 i

∫
d3x δij [Πa(x)∇jϕa(x) + ∇jϕa(x)Πa(x)]

= +1
2 i

∫
d3x δij [2Πa(x)∇jϕa(x) + ∇jδ3(0)]

= −iδijP j . (22.53)

Finally, to compute [Jm, Jn] = εmkiεnlj[Dki,Dlj ], we multiply eq. (22.44) by xkyl and inte-
grate over d3x and d3y. We get

[Dki,Dlj ] = i

∫
d3x d3y xkyl

[
Πa(x)∇i

xδ
3(x−y)∇j

yϕa(y) − Πa(y)∇j
yδ

3(x−y)∇i
xϕa(x)

]

= −i
∫
d3x d3y

[
yl∇i

x(x
kΠa(x))∇j

yϕa(y) − xk∇j
y(y

lΠa(y))∇i
xϕa(x)

]
δ3(x−y)

= −i
∫
d3x

[
xl∇i(xkΠa)∇jϕa − xk∇j(xlΠa)∇iϕa

]

= −i
∫
d3x

[
xl(δikΠa + xk∇iΠa)∇jϕa − xk(δjlΠa + xl∇jΠa)∇iϕa

]
. (22.54)

The δik and δjl terms will vanish when we contract with εmkiεnlj; thus we have

[Jm, Jn] = −iεmkiεnlj
∫
d3x

[
xkxl∇iΠa∇jϕa − xkxl∇jΠa∇iϕa

]

= +iεmkiεnlj
∫
d3x Πa

[
∇i(xkxl∇jϕa) −∇j(xkxl∇iϕa)

]

= +iεmkiεnlj
∫
d3x Πa

[
(δikxl + δilxk + xkxl∇i)∇j − (i↔j)

]
ϕa

= +iεmkiεnlj
∫
d3x Πa(δ

ilxk∇i − δjkxl∇i)ϕa

= −iεmkiεnlj
∫
d3x (δilxkT 0j − δjkxlT 0i)

= −iεmkiεnlj(δilDkj − δjkDli)

= −i
[
(εmkiεnij)Dkj − (εmjiεnlj)Dli

]

= −i
[
(δjmδkn − δjkδmn)Dkj − (δinδlm − δilδmn)Dli

]

= −i
[
Dnm −Dmn

]

= +iεmnpJp . (22.55)

That was a lot of tedious work, but it’s always good to confirm general arguments with specific
calculations.
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23 Discrete Symmetries: P, T, C, and Z
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24 Nonabelian Symmetries

24.1) RTR = 1 ⇒ RijRik = δjk ⇒ (δij + θij)(δik + θik) = δjk ⇒ δijδik + δijθik + θijδik + O(θ2) =
δjk ⇒ δjk + θjk + θkj = δjk ⇒ θjk + θkj = 0.

24.2) Let R = 1 + θ, R′ = 1 + θ′; then, keeping terms up to O(θ2), we have

R′−1R−1R′R = (1 − θ′ + θ′2)(1 − θ + θ2)(1 + θ′)(1 + θ)

= 1 + θ′θ − θθ′ . (24.17)

This must be an orthogonal matrix of the form 1+θ′′. Using eq. (24.6), we find θaθ′b[T a, T b] =
iθ′′cT c. Since the real parameters θa and θb can be chosen arbitrarily, this can only be true
if [T a, T b] = ifabcT c, where the coefficients fabc are real.

24.3) a) From eq. (22.6), we have

θajµa =
∂L

∂(∂µϕi)
δϕi

= (−∂µϕi)(−iθa(T a)ijϕj) , (24.18)

which yields
jaµ = i∂µϕi(T

a)ijϕj . (24.19)

b) Q =
∫
d3y j0a(y), and j0a = i∂0ϕj(T

a)jkϕk = −iϕ̇j(T a)jkϕk = −iΠj(T
a)jkϕk. Q is time

independent, so we can take y0 = x0. Then [ϕi(x), j
0a(y)] = −i[ϕi(x),Πj(y)](T

a)jkϕk(y) =
δ3(x−y)δij(T

a)jkϕk(y). Integrating over d3y yields [ϕi(x), Q
a] = (T a)ikϕk(x).

c) Consider [[ϕi, Q
a], Qb] = (T a)ij [ϕj , Q

b] = (T a)ij(T
b)jkϕk = (T aT b)ikϕk; swapping a and b

yields [[ϕi, Q
b], Qa] = (T bT a)ikϕk. Subtracting, we get

[[ϕi, Q
a], Qb] − [[ϕi, Q

b], Qa] = [T a, T b]ikϕk = ifabc(T c)ikϕk . (24.20)

The left-hand side of eq. (24.20) can be rewritten as [[ϕi, Q
a], Qb] + [[Qb, ϕi], Q

a], and by the
Jacobi identity, this equals −[[Qa, Qb], ϕi], which can be rewritten as [ϕi, [Q

a, Qb]]. Thus we
have

[ϕi, [Q
a, Qb]] = ifabc(T c)ikϕk . (24.21)

Contracting [ϕi, Q
c] = (T c)ikϕk with ifabc also yields the right-hand side of eq. (24.21). Thus,

[Qa, Qb]−ifabcQc commutes with ϕa(x), and (since Qa is time independent) also with ϕ̇a(x) =
Πa(x). Therefore [Qa, Qb] − ifabcQc must equal a constant tensor with two antisymmetric
adjoint indices. There is no such invariant symbol for SO(N), and so the constant tensor
must vanish.

24.4) Let S = 1 + θ; then SηST = η implies θη + ηθT = 0. Let us write

θ =

(
A B

C D

)
. (24.22)

Then

θη + ηθT =

(−B +BT A+DT

−A−DT C − CT

)
, (24.23)
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and this vanishes only if BT = B, CT = C, and DT = A. Thus we can choose the N2

elements of A freely, while B and C each have 1
2N(N+1) independent elements. Thus the

total number of independent matrix elements of θ is 2N2 +N = 1
2(2N)(2N+1), so this is the

number of generators of Sp(2N).
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25 Unstable Particles and Resonances

26 Infrared Divergences
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27 Other Renormalization Schemes

27.1) For notational convenience, let t = lnµ; Then we have dα/dt = b1α
2, or equivalently dt =

dα/b1α
2. We also have dm/dt = c1αm, or equivalently dm/m = c1α dt = (c1/b1)dα/α.

Integrating, we find ln(m2/m1) = (c1/b1) ln(α2/α1), which implies eq. (27.29).
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28 The Renormalization Group

28.1) From section 31, we have

Zϕ = 1 +O(λ2) , (28.49)

Zm = 1 +
λ

16π2

1

ε
+O(λ2) , (28.50)

Zλ = 1 +
3λ

16π2

1

ε
+O(λ2) , (28.51)

and β(λ) = 3λ2/16π2 +O(λ3). Following section 28, we define Mn(λ) via

∞∑

n=1

Mn(λ)

εn
= ln(Z1/2

m Z−1/2
ϕ ) . (28.52)

Then we have γm(λ) = λM ′
1(λ). Using eqs. (28.49) and (28.50), we find M1(λ) = λ/32π2, and

so γm(λ) = λ/32π2. Similarly, we define Zϕ = 1 + a1(λ)/ε+ . . ., and then γ(λ) = −1
2λa

′
1(λ);

we have a1(λ) = O(λ2), so γ(λ) = O(λ2).

28.2) From problems 14.6 and 16.2, we have

Zϕ = 1 +O(λ2) , (28.53)

Zm = 1 +
λ

8π2

1

ε
+O(λ2) , (28.54)

Zλ = 1 +
5λ

16π2

1

ε
+O(λ2) . (28.55)

These yield β(λ) = 5λ2/16π2 +O(λ3), γm(λ) = λ/16π2 +O(λ2), and γ(λ) = O(λ2).

28.3) No term linear in χ is needed because it enters the lagrangian only in even powers, and so we
cannot draw a diagram with just one external χ line. Thus its VEV is automatically zero.
Equivalently, the lagrangian is invariant under the Z2 symmetry χ→ −χ, and the argument
at the end of section 23 applies.

a) Use a solid line for χ and a dashed line for ϕ. The one-loop and counterterm diagrams
contributing to the χ propagator are

Note that the symmetry factor of the loop diagram is S = 1. Following the analysis in section
14, the corresponding contributions to the self-energy are

Πχ(k
2) = − h2

(4π)3

(
2

ε
+ . . .

)∫ 1

0
dx D [1 +O(ε)] − (Zχ−1)k2 − (ZM−1)M2 , (28.56)

where D = x(1−x)k2 + xm2 + (1−x)M2. We have
∫ 1
0 dx D = 1

6k
2 + 1

2m
2 + 1

2M
2, and so

cancelation of the 1/ε terms requires

Zχ = 1 − h2

3(4π)3
1

ε
, (28.57)

ZM = 1 − h2

(4π)3

(
1 +

m2

M2

)
1

ε
, (28.58)
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at the one-loop level. For the ϕ propagator, we have

Each loop diagram has a symmetry factor of S = 2. Thus we have

Πϕ(k2) = −1

2

1

(4π)3

(
2

ε
+ . . .

)[
g2(1

6k
2 +m2) +h2(1

6k
2 +M2) + . . .

]
− (Zϕ−1)k2 − (Zm−1)m2

(28.59)
and so cancelation of the 1/ε terms requires

Zϕ = 1 − 1

6(4π)3

(
g2 + h2

)1

ε
, (28.60)

ZM = 1 − 1

(4π)3

(
g2 +

M2

m2
h2

)
1

ε
. (28.61)

at the one-loop level. For the ϕ3 vertex, the contributing one-loop diagrams are

Using our results from section 16, we have

Vϕ3 = Zgg +
1

(4π)3

(
1

ε
+ . . .

)(
g3 + h3

)
, (28.62)

and so cancelation of the 1/ε terms requires

Zg = 1 − 1

(4π)3

(
g2 +

h3

g

)
1

ε
(28.63)

at the one-loop level. For the ϕχ2 vertex, the contributing one-loop diagrams are

Using our results from section 16, we have

Vϕχ2 = Zhh+
1

(4π)3

(
1

ε
+ . . .

)(
gh2 + h3

)
, (28.64)

and so cancelation of the 1/ε terms requires

Zh = 1 − 1

(4π)3

(
gh+ h2

)1

ε
(28.65)

at the one-loop level.

b) We have

ln g0 = G+ ln g + 1
2ε ln µ̃ , (28.66)

lnh0 = H + lnh+ 1
2ε ln µ̃ , (28.67)
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where G =
∑
nGn/ε

n = ln(Z
−3/2
ϕ Zg) and H =

∑
nHn/ε

n = ln(Z
−1/2
ϕ Z−1

χ Zh), and

G1 =
1

(4π)3

[
−3

2(−1
6g

2 − 1
6h

2) + (−g2 − h3/g)
]

=
1

(4π)3

[
−3

4g
2 + 1

4h
2 − h3/g

]
, (28.68)

H1 =
1

(4π)3

[
−1

2(−1
6g

2 − 1
6h

2) − (−1
3h

2) + (−gh− h2)
]

=
1

(4π)3

[
1
12g

2 − gh − 7
12h

2
]
. (28.69)

Differentiating eq. (28.66) with respect to µ, multiplying by gµ, and denoting µd/dµ with a
dot, we find

0 = gĠ+ ġ + 1
2εg

= g
∂G

∂g
ġ + g

∂G

∂h
ḣ+ ġ + 1

2εg

=

(
1 + g

∂G

∂g

)
ġ + g

∂G

∂h
ḣ+ 1

2εg . (28.70)

Similarly differentiating eq. (28.67), we find

0 =

(
1 + h

∂H

∂h

)
ḣ+ h

∂H

∂g
ġ + 1

2εh . (28.71)

Eqs. (28.70) and (28.71) can be combined into

0 =

(
1 + g ∂G∂g g ∂G∂h

h∂H∂g 1 + h∂H∂h

)(
ġ

ḣ

)
+ 1

2ε

(
g

h

)
. (28.72)

Solving for ġ and ḣ, we have

(
ġ

ḣ

)
= −1

2ε

(
1 + g ∂G∂g g ∂G∂h

h∂H∂g 1 + h∂H∂h

)−1(
g

h

)
. (28.73)

Formally expanding in powers of 1/ε, we find

(
ġ

ḣ

)
= −1

2ε

(
g

h

)
+ 1

2

(
g ∂G1

∂g g ∂G1

∂h

h∂H1

∂g h∂H1

∂h

)(
g

h

)
+O(ε−1) . (28.74)

The O(ε−1) and higher terms must vanish in a renormalizable theory.

c) Plugging eqs. (28.68) and (28.69) into eq. (28.74), we find

βg(g, h) =
1

(4π)3

[
−3

4g
3 + 1

4gh
2 − h3

]
, (28.75)

βh(g, h) =
1

(4π)3

[
− 7

12h
3 − gh2 + 1

12hg
2
]
. (28.76)
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d) If we change the sign of g, we can compensate by changing the sign of both ϕ and h. But
once the sign of g is fixed, we cannot compensate for changing the sign of h. We see in the
formula for βg that the sign of h is relevant.

If βg/g and βh/h are both negative, the theory is asymptotically free: both couplings get
weaker at high energy. Let us define r ≡ h/g; then we have βg/g = (g2/4(4π)3)(−3+r−4r3),
which is negative for r > −1, and βh/h = (g2/12(4π)3)(−7r2 − 12r+1), which is negative for
r < −1

7(
√

43 + 6) = −1.78 and for r > 1
7(
√

43− 6) = 0.08. Thus the theory is asymptotically
free for r > 0.08.
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29 Effective Field Theory

29.1) a) Let a dot denote d/d ln Λ, so that ġ = b1g
2 + b2g

3 + . . . . Inverting g̃ = g + c2g
2 + . . . , we

have g = g̃ − c2g̃
2 + . . . We now have

ġ = ˙̃g − 2c2g̃ ˙̃g + . . .

= (1 − 2c2g̃ + . . .) ˙̃g , (29.44)

or, rearranging,

˙̃g = (1 + 2c2g̃ + . . .)−1ġ

= (1 + 2c2g̃ + . . .)(b1g
2 + b2g

3 + . . .)

= (1 + 2c2g̃ + . . .)[b1(g̃ − c2g̃
2)2 + b2(g̃ − c2g̃

2)3 + . . .]

= b1g̃
2 + b2g̃

3 + . . . . (29.45)

b) Just make everything into a matrix: we then have ġi = b2,ijkgjgk + b3,ijklgjgkgl + . . . and
gi = g̃i − c2,ijkg̃j g̃k + . . . . Everything in part (a) still goes through.

29.2) a) We use the relation ∆̃(k2)−1 = ∆(k2)−1 − Π(k2), and only fields with Λ < |ℓ| < Λ0

circulate in the loop in fig. 14.1; in this case, ∆̃(k2) is the propagator with a cutoff Λ, and
differentiating ∆̃(k2)−1 with respect to k2 (and setting k2 = 0) yields Z(Λ), the coefficient of
the kinetic term when the cutoff is Λ. The vertex factor is −Z3/2(Λ0)g(Λ0), and the tree-level
propagator is ∆(k2) = 1/[Z(Λ0)k

2]. We thus have Z(Λ) = Z(Λ0) − Π′(k2). At the one-loop
level,

Π(k2) = 1
2 [Z3/2(Λ0)g(Λ0)]

2
∫ Λ0

Λ

d6ℓ

(2π)6
1

[Z(Λ0)ℓ2][Z(Λ0)(ℓ+k)2]
, (29.46)

where the one-half is a symmetry factor. Differentiating with respect to k2, setting k2 = 0,
and plugging into Z(Λ) = Z(Λ0) − Π′(k2) then yields the first unnumbered equation in the
problem text.

Using Feynman’s formula, we have 1/(ℓ2(ℓ+k)2) =
∫ 1
0 dx (q2+x(1−x)k2)−2, where q = ℓ+xk.

Differentiating with respect to k2 and setting k to zero yields −2
∫ 1
0 dxx(1−x)(ℓ2)−3 = −1

3ℓ
−6.

Thus we have

Π′(k2) = −1
2Z(Λ0)g

2(Λ0)
Ω3

3(2π)6

∫ Λ

Λ0

ℓ5 dℓ

ℓ6

= −Z(Λ0)
g2(Λ0)

6(4π)3
ln(Λ0/Λ) , (29.47)

where Ωd = 2πd/2/Γ(1
2d), so that Ω6 = π3. Plugging this into Z(Λ) = Z(Λ0) − Π′(k2) then

yields

Z(Λ) = Z(Λ0)

(
1 +

g2(Λ0)

6(4π)3
ln(Λ0/Λ)

)
. (29.48)

The vertex correction works similarly; with a cutoff Λ, we have V3(0, 0, 0) = −Z3/2(Λ)g(Λ),
and only fields with Λ < |ℓ| < Λ0 circulate in the loop in fig. 16.1. This yields the second
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unnumbered equation in the problem text, which evaluates to

g(Λ) =
Z3/2(Λ0)

Z3/2(Λ)
g(Λ0)

(
1 +

g2(Λ0)

(4π)3
ln(Λ0/Λ)

)
. (29.49)

b) Using eq. (29.48) for Z(Λ), and expanding in powers of g(Λ0), we find

g(Λ) = g(Λ0)

(
1 +

(
(−3

2)(1
6 ) + 1

)g2(Λ0)

(4π)3
ln(Λ0/Λ)

)

= g(Λ0)

(
1 +

3

4

g2(Λ0)

(4π)3
ln(Λ0/Λ)

)
. (29.50)

Differentiating with respect to ln Λ and then setting Λ0 = Λ, we find

d

d ln Λ
g(Λ) = −3

4

g3(Λ)

(4π)3
. (29.51)

Multiplying by 2g/(4π)3 , the left-hand side becomes dα/d ln Λ, where α = g2/(4π)3, and the
right-hand side becomes −3

2α
2. This agrees with our result in section 28.
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30 Spontaneous Symmetry Breaking

31 Broken Symmetry and Loop Corrections
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32 Spontaneous Breaking of Continuous Symmetries

32.1) a) From eq. (22.14), jµ = i∂µϕ†ϕ−i∂µϕϕ†, so that j0 = −iϕ̇†ϕ+iϕ̇ϕ† = −iΠϕ−iΠ†ϕ†, where
[ϕ(x),Π(y)] = [ϕ†(x),Π†(y)] = iδ3(x−y) at equal times, and all other commutators van-
ish. Thus [ϕ(x), j0(y)] = −i[ϕ(x),Π(y)]ϕ(y) = δ3(x−y)ϕ(y), and integrating over d3y yields
[ϕ(x), Q] = ϕ(x). Next, let F (α) ≡ e−iαQϕe+iαQ, and note that F ′(α) = e−iαQi[ϕ,Q]e+iαQ.
Since [ϕ,Q] = ϕ, this becomes F ′(α) = ie−iαQϕe+iαQ = iF (α). Therefore F (n)(α) = inF (α),
and F (n)(0) = inF (0) = inϕ. Thus, by Taylor expansion, F (α) =

∑∞
n=0 F

(n)(0)αn/n! =
ϕ
∑∞
n=0 i

nαn/n! = ϕe+iα.

b) Since [H,Q] = 0, He−iαQ|θ〉 = 0, so e−iαQ|θ〉 must be a linear combination of vacua. Then,
since e+iαQϕe−iαQ = e−iαϕ, we have 〈θ|e+iαQϕe−iαQ|θ〉 = e−iα〈θ|ϕ|θ〉; using eq. (32.5), this
becomes 〈θ|e+iαQϕe−iαQ|θ〉 = 1√

2
ve−i(θ+α) = 〈θ+α|ϕ|θ+α〉.

c) Expanding in powers of α, we get (1− iαQ)|θ〉 = |θ〉+α(d/dθ)|θ〉; the second term on the
right-hand side is not zero.

32.2) If Qa|0〉 = 0, then 〈0|Qa = 0, and 〈0|[ϕi, Qa]〉 = 〈0|ϕiQa|0〉 − 〈0|Qaϕi|0〉 = 0. Thus if
〈0|[ϕi, Qa]|0〉 = (T a)ij〈0|ϕj |0〉 = 1√

2
(T a)ijvj 6= 0, then Qa|0〉 6= 0.

32.3) a) jµ = −i∂µϕϕ† + h.c.; plugging in eq. (32.8), we get jµ = −v(1 + ρ/v)2∂µχ. In free-field
theory, we then find 〈k|jµ(x)|0〉 = ivkµe−ikx, so f = v.

b) We can compute corrections by treating jµ(x) as a vertex, and drawing Feynman diagrams
with one external χ line. The single tree diagram just attaches that line to the vertex with
vertex factor ivkµ, yielding f = v. Loop corrections will modify this to f = v(1 +O(λ)).
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33 Representations of the Lorentz Group

33.1) Aµν = 1
2 (Bµν −Bνµ), T = gµνB

µν , Sµν = 1
2(Bµν +Bνµ) − 1

4g
µνT .

33.2) 4[Ni, Nj ] = [Ji, Jj ] − i[Ji,Kj ] − i[Ki, Jj ] − [Ki,Kj ] = iεijk(Jk − iKk − iKk + Jk) = 4iεijkNk.

4[N †
i , N

†
j ] = [Ji, Jj ] + i[Ji,Kj ] + i[Ki, Jj ]− [Ki,Kj ] = iεijk(Jk + iKk + iKk + Jk) = 4iεijkN

†
k .

4[Ni, N
†
j ] = [Ji, Jj ] + i[Ji,Kj ] − i[Ki, Jj ] + [Ki,Kj ] = iεijk(Jk + iKk − iKk − Jk) = 0.
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34 Left- and Right-Handed Spinor Fields

34.1) Without the spin indices, this is the same as problem 2.8; we have U(Λ)−1ψa(x)U(Λ) =
ψa(x) + i

2δωµν [ψa(x),M
µν ] on the LHS, and La

b(Λ)ψb(Λ
−1x) = [δa

b + i
2δωµν(S

µν
L )a

b][ψb(x) +
i
2δωµνLµνψb(x)] = ψa(x) + i

2δωµν [δa
bLµν + (SµνL )a

b]ψb(x) on the RHS; matching coefficients
of δωµν yields eq. (34.6).

34.2) The commutation relations of the S’s are the same as those of the M ’s. In problem 2.4, we
showed that the commutation relations of the M ’s are equivalent to eqs. (33.11–13). Let us

define J i ≡ 1
2ε
ijkSjkL ; from eq. (34.9) we see that J k = 1

2σ
k. Let us also define Kk ≡ Sk0

L
;

from eq. (34.10) we see that Kk = 1
2 iσ

k. Eqs. (33.11–13) for J and K then follow immediately
from the Pauli-matrix commutation relations, [σi, σj ] = 2iεijkσk.

34.3) Consider εµνρσεαβγσ; the indices on each Levi-Civita symbol must be all different to get a
nonzero result. Consider (for example) ε123σεαβγσ ; then only σ = 0 contributes to the sum;
and then the second symbol is nonzero only if αβγ is a permutation of 123. If it is an even
permutation, then the result is ε1230ε1230 = (−1)(+1) = −1, and if it is an odd permutation,
then the result is +1. More generally, the result is −1 if αβγ is an even permutation of µνρ,
and +1 if αβγ is an odd permutation of µνρ. This is equivalent to eq. (34.44).

To get eq. (34.45), we contract with δγρ and use δγρδ
ρ
γ = 4. To get eq. (34.46), we further

contract with δβν .

34.4) Consider first a tensor with N totally symmetric undotted indices, and no dotted indices.
Because the indices are totally symmetric, we can put them in a standard order, with all 1’s
before all 2’s. Each independent component is then labeled by an integer k = 0, . . . ,N that
specifies the number of 1’s, and so the number of independent components is N+1.

Next, using

[Cab...c(0), N3] = 1
2 (σ3)a

dCdb...c(0) + 1
2(σ3)b

dCad...c(0) + . . .+ 1
2(σ3)c

dCab...d(0) , (34.47)

which follows from eqs. (34.7), (34.9), J i = N i +N †i, and [Cab...c(x),N
†i] = 0, we have

[C11...2(0),N3] =
(

1
2k − 1

2(N−k)
)
C11...2(0) . (34.48)

We see that the allowed values of N3 are −1
2N,−1

2N+1, . . . ,+1
2N , corresponding to k =

0, 1, . . . , N . Thus these N+1 components correspond to a single irreducible representation
with dimension 2n+1 = N+1. If we now add M completely symmertic dotted indices,
these are treated independently, and form a single irreducible representation with dimension
2n′+1 = M+1. Thus, overall the representation is (N+1,M+1).
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35 Manipulating Spinor Indices

35.1) σ̄µȧa = εacεȧċσµcċ = −εacσµcċεċȧ = −[(iσ2)(σ
µ)(iσ2)]

aȧ = [(σ2σ
µσ2)

T]ȧa. Then for µ = 3 we
have σ2σ

3σ2 = −(σ2)
2σ3 = −σ3, and (σ3)T = σ3; the same is true for µ = 1. For µ = 2, we

have σ2σ
2σ2 = (σ2)

2σ2 = +σ2, and (σ2)T = −σ2. For µ = 0, we have σ2Iσ2 = (σ2)
2 = I, and

IT = I. Thus we have σ̄0ȧa = I and σ̄iȧa = −σi.

35.2) (SµνL )a
b = i

4(σµσ̄ν − σν σ̄µ)a
b. Suppressing spin indices, we have S12

L
= i

4(σ1σ̄2 − σ2σ̄1) =
i
4((σ1)(−σ2) − (σ2)(−σ1)) = − i

4 [σ1, σ2] = 1
2σ3, and cyclic permutations. Also, Sk0

L
=

i
4(σkσ̄0 − σ0σ̄k) = i

4((σk)(I) − (I)(−σk)) = i
2σ

k.

35.3) (SµνR )ȧċ = − i
4(σ̄µσν − σ̄νσµ)ȧċ. Suppressing spin indices, we have S12

R
= − i

4(σ̄1σ2 − σ̄2σ1) =
− i

4((−σ1)(σ2) − (−σ2)(−σ1)) = i
4 [σ1, σ2] = −1

2σ3, and cyclic permutations. Also, Sk0
R

=
− i

4(σ̄kσ0 − σ̄0σk) = − i
4((−σk)(I) − (I)(σk)) = i

2σ
k. Eq. (34.17) can be written as (SµνR )ȧċ =

−[(SµνL )ab]
∗ = −[(SµνL )b

a]T∗ = −[(SµνL )b
a]†. Comparing with our results in the previous prob-

lem, and using the hermiticity of the Pauli matrices, we see that (SµνR )ȧċ = −[(SµνL )b
a]† is

satisfied.

35.4) εacεȧċσµaȧσ
ν
cċ = σµaȧσ̄

νȧa = Tr(σµσ̄ν). If µ = 0 and ν = 0, we get Tr(I) = 2 = −2g00. If µ = 0
and ν = i or vice versa, we get the trace of σi, which vanishes. If µ = i and ν = j, we get
−Tr(σiσj) = −2δij = −2gij .
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36 Lagrangians for Spinor Fields

36.1) In problem 2.9, we showed that eqs. (36.56–57) hold for the vector representation. The result,
however, must be representation independent.

36.2) γ5 = iγ0γ1γ2γ3 = i

(
0 I

I 0

)(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)(
0 σ2

−σ2 0

)

=

(
iσ1σ2σ3 0

0 −iσ1σ2σ3

)
=

(−I 0

0 I

)
.

36.3) a) We have (χ†
1σ̄

µχ2)(χ
†
3σ̄µχ4) = σ̄µȧaσ̄ċcµ χ

†
1ȧχ2aχ

†
3ċχ4c. Then we use σ̄µȧaσ̄ċcµ = −2εacεȧċ

and χ†
1ȧχ2aχ

†
3ċχ4c = −χ†

1ȧχ
†
3ċχ2aχ4c along with εacχc = χa and its dotted counterpart

to get (χ†
1σ̄

µχ2)(χ
†
3σ̄µχ4) = 2χ†

1ȧχ
†ȧ
3 χ2aχ

a
4 = −2χ†

1ȧχ
†ȧ
3 χ

a
2χ4a = −2(χ†

1χ
†
3)(χ2χ4), which is

eq. (36.58). Then we use χ2χ4 = χ4χ2, and go backwards throught these steps to get the
right-hand side of eq. (36.59).

b) Using eqs. (36.7), (36.22), (36.45), and (36.60), we find Ψ1γ
µPLΨ2 = χ†

1σ̄
µχ2,

Ψ1PRΨC

3 = χ†
1χ

†
3, and ΨC

4PLΨ2 = χ4χ2, which yield eqs. (36.61–62) from eqs. (36.58–59).

c) In terms of Weyl fields, we have Ψ1γ
µPRΨ2 = ξ1σ

µξ†2 = −ξ†2σ̄µξ1 = −ΨC

2γ
µPLΨ

C

1 ,

Ψ1PLΨ2 = ξ1χ2 = χ2ξ1 = ΨC

2PLΨ
C

1 , and Ψ1PRΨ2 = χ†
1ξ

†
2 = ξ†2χ

†
1 = ΨC

2PRΨC

1 .

36.4) a) This form for T µν is identical to eq. (22.29). The derivation is unchanged if the index a is
replaced with the Lorentz index A.

b) For Λ = 1+δω, the Lorentz transformation ϕA(x) → LA
B(Λ)ϕB(Λ−1x) becomes ϕA(x) →

(δA
B+ i

2δωνρ(S
νρ)A

B)(ϕB(x)−δωνρxρ∂νϕB(x)), so that δϕA = δωνρ(−xρ∂νϕA+ i
2(Sνρ)A

B)ϕB .
Also, L(x) → L(Λ−1x) implies δL = −δωνρxρ∂νL = ∂µ(−δωνρgµνxρL); we then identify
Kµ = −δωνρgµνxρL. Using eq. (22.27), we then have

jµ =
∂L

∂(∂µϕA)
δϕA −Kµ

= δωνρ

[
∂L

∂(∂µϕA)
(−xρ∂νϕA) +

∂L
∂(∂µϕA)

i
2(Sνρ)A

BϕB + gµνxρL
]

= δωνρ

[
xρT µν +

∂L
∂(∂µϕA)

i
2(Sνρ)A

BϕB

]

= −1
2δωνρ

[
xνT µρ − xρT µν − i

∂L
∂(∂µϕA)

(Sνρ)A
BϕB

]
, (36.81)

and we identify the object in square brackets as

Mµνρ ≡ xνT µρ − xρT µν +Bµνρ , (36.82)

where

Bµνρ ≡ −i ∂L
∂(∂µϕA)

(Sνρ)A
BϕB . (36.83)
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c) Consider ∂µMµνρ; we have ∂µ(x
νT µρ) = δµ

νT µρ + xν∂µT
µν = T νρ + 0 = T νρ, and so

0 = ∂µMµνρ = T νρ − T ρν + ∂µB
µνρ.

d) We have Θµν ≡ T µν + 1
2∂ρ(B

ρµν − Bµρν − Bνρµ). Note that because (by definition)
Sµν = −Sνµ, eq. (36.83) implies Bρµν = −Bρνµ. Note also that the last two terms in Θµν

are symmetric on µ ↔ ν. Thus we have Θµν − Θνµ = T µν − T νµ + ∂ρB
ρµν , which vanishes

according to the result of part (c).

Next consider ∂µΘ
µν = ∂µT

µν + 1
2∂µ∂ρ(B

ρµν −Bµρν −Bνρµ) = 1
2∂µ∂ρ(B

ρµν −Bµρν −Bνρµ).
Note that Bρµν −Bµρν +Bνρµ is antisymmetric on µ↔ ρ, and therefore vanishes when acted
on by the symmetric derivative combination ∂µ∂ρ.

Θ0ν = T 0ν + 1
2∂ρ(B

ρ0ν − B0ρν − Bνρ0) = T 0ν + 1
2∂i(B

i0ν − B0iν − Bνi0). The integral over
d3x of 1

2∂i(. . .) vanishes (assuming suitable boundary conditions at spatial infinity) because
it is a total divergence. Therefore P ν =

∫
d3xT 0ν =

∫
d3xΘ0ν .

e) Recall from part (c) that ∂µ(x
νΘµρ) = Θνρ if ∂µΘ

µν = 0. We have Ξµνρ ≡ xνΘµρ−xρΘµν ,
and so ∂µΞ

µνρ = Θνρ − Θρν = 0.

Ξµνρ = xνT µρ − xρT µν + 1
2x

ν∂σ(B
σµρ −Bµσρ −Bρσµ) − 1

2x
ρ∂σ(B

σµν −Bµσν −Bνσµ)

= Mµνρ −Bµνρ + 1
2x

ν∂σ(B
σµρ −Bµσρ −Bρσµ) − 1

2x
ρ∂σ(B

σµν −Bµσν −Bνσµ) ,

and so

Ξ0νρ = M0νρ −B0νρ + 1
2x

ν∂i(B
i0ρ −B0iρ −Bρi0) + 1

2x
ρ∂i(B

i0ν −B0iν −Bνi0) .

Now using xν∂i(. . .) = ∂i[x
ν(. . .)] − (. . .)∂ix

ν = ∂i[x
ν(. . .)] − (. . .)δi

ν , we get

Ξ0νρ = M0νρ −B0νρ − 1
2(Bν0ρ −B0νρ −Bρν0) + 1

2 (Bρ0ν −B0ρν −Bνρ0) + ∂i[. . .]

= M0νρ − 1
2 (B0νρ +B0ρν) − 1

2(Bν0ρ +Bνρ0) + 1
2(Bρ0ν +Bρν0) + ∂i[. . .]

= M0νρ + ∂i[. . .] .

Since the last term is a total divergence, Mνρ =
∫
d3xM0νρ =

∫
d3xΞ0νρ.

36.5) a) The transformation matrix must be orthogonal to preserve the mass term, hence the
symmetry is O(N).

b) A Majorana field is equivalent to a Weyl field, hence the symmetry is U(N).

c) Combining the results of parts (a) and (b), the symmetry is O(N).

d) A Dirac field is equivalent to two Weyl fields, hence the symmetry is U(2N).

e) Combining the results of parts (a) and (d), the symmetry is O(2N).
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37 Canonical Quantization of Spinor Fields I

37.1) Eq. (37.13) follows immediately because all components of χ anticommute with all components
of ξ†. To get eq. (37.14), we write

{Ψα,Ψβ} =

( {χc, ξa} {χc, χ†
ȧ}

{ξ†ċ, ξa} {ξ†ċ, χ†
ȧ}

)

=

(
0 σ0

cȧ

σ̄0ċa 0

)
δ3(x−y)

= γ0δ3(x−y) . (37.32)

where we used eqs. (37.7) and (37.8) to get the second line.
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38 Spinor Technology

38.1) In a basis where A is diagonal (with diagonal entries ±1), exp(cA) = (cosh c) + (sinh c)A is

obvious. We have 2iKj = −γjγ0 =

(−σj 0
0 σj

)
, which obviously has eigenvalues ±1, and so

exp(iηp̂·K) =

(
(cosh 1

2η) − (sinh 1
2η)p̂·σ 0

0 (cosh 1
2η) + (sinh 1

2η)p̂·σ

)
, (38.42)

where sinh η = |p|/m, cosh η = E/m, cosh 1
2η =

√
(E +m)/2m, sinh 1

2η =
√

(E −m)/2m.

Also, using the usual angles θ and φ to specify p̂, we have p̂·σ =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. We

can then act on u±(0) and v±(0) as given by eq. (38.6) to get u±(p) and v±(p)

38.2) From the explicit form of the gamma matrices, we can see that (γ0)† = γ0 and (γj)† = −γj .
Also, since β = γ0 numerically, the gamma matrix anticommutation relations imply β2 = 1,
βγ0 = γ0β, and βγj = −γjβ. Therefore γ0 = β(γ0)†β = βγ0β = γ0β2 = γ0, and γj =
β(γj)†β = −βγjβ = γjβ2 = γj . Thus, γµ = γµ.

From the explicit form of γ5, we see that it is hermitian. We also have {γµ, γ5} = 0, since
γµ commutes with one gamma matrix in γ5 = iγ0γ1γ2γ3 and anticommutes with the other
three. Therefore γ5 = β(γ5)

†β = βγ5β = −γ5β
2 = −γ5. Since i = −i, we have iγ5 = iγ5.

The remaining formulae in eq. (38.15) can be found from these by using AB = β(AB)†β =
βB†A†β = βB†ββA†β = BA.

38.3) Subtract eq. (38.19) from eq. (38.20), sandwich between us(p) and vs′(p
′), and use /p ′vs′(p′) =

mvs(p
′) and us(p)/p = −mus(p) to get

2mus(p)γµvs′(p
′) = us(p)

[
(p− p′)µ + 2iSµν(p + p′)ν

]
vs(p

′) . (38.43)

If we now set p′ = −p (which implies p′0 = p0) and µ = 0, and remember that S00 = 0, all
terms on the right-hand side vanish. This yields the first equation in (38.22). An identical
derivation applies to the second; or, bar-conjugate the first and relabel.

38.4) Add eqs. (38.19) and (38.20), multiply on the right by γ5, sandwich between us′(p
′) and

us(p) or vs′(p
′) and vs(p), and use eq. (38.16). Then use /pγ5 = −γ5/p, which follows from the

definition of γ5, followed by eq. (38.1).
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39 Canonical Quantization of Spinor Fields II

39.1) Substituting in the mode expansions for Ψ and Ψ, we have

Q =
∑

s,s′

∫
d̃p d̃p ′ d3x

(
b†s′(p

′)us′(p
′)e−ip

′x + ds′(p
′)vs′(p

′)eip
′x
)

×
(
bs(p)γ0us(p)eipx + d†s(p)γ0vs(p)e−ipx

)
. (39.44)

Note that this is the same as the first equality in eq. (39.21) for H, except that (1) a factor
of ω is missing and (2) the d†s(p) term has a plus sign rather than a minus sign. Thus we
conclude that the final formula for Q is also the same, with these changes, and so

Q =
∑

s=±

∫
d̃p
[
b†s(p)bs(p) + ds(p)d†s(p)

]

=
∑

s=±

∫
d̃p
[
b†s(p)bs(p) − d†s(p)ds(p)

]
+ constant . (39.45)

39.2) We have

Jzb
†
s(p)|0〉 =

∫
d3x eipx JzΨ(x)γ0us(p)|0〉

=

∫
d3x eipx [Jz,Ψ(x)]γ0us(p)|0〉

=

∫
d3x eipx [M12,Ψ(x)]γ0us(p)|0〉 , (39.46)

where we used Jz|0〉 = 0 in the second line. Barring [Ψ,Mµν ] = −i(xµ∂ν − xν∂µ)Ψ + SµνΨ
yields [Mµν ,Ψ] = i(xµ∂ν − xν∂µ)Ψ + ΨSµν , and so

Jzb
†
s(p)|0〉 =

∫
d3x eipx

[
i(x1∂2 − x2∂1)Ψ(x) + Ψ(x)S12

]
γ0us(p)|0〉 . (39.47)

For p = pẑ, we can integrate by parts in the first term and get zero (more precisely, a surface
term that we assume vanishes via suitable boundary conditions at spatial infinity). In the
second term, we use S12γ0 = γ0S12, and us(p) = exp(iηK3)us(0) with K3 = i

2γ
3γ0. We have

[S12,K3] = 0, and so S12us(p) = exp(iηK3)S12us(0) = +1
2s exp(iηK3)us(0) = +1

2s us(p).
This leaves

Jzb
†
s(p)|0〉 = +1

2s

∫
d3x eipx Ψ(x)γ0us(p)|0〉

= +1
2s b

†
s(p)|0〉 . (39.48)

Similarly,

Jzd
†
s(p)|0〉 =

∫
d3x eipx vs(p)γ0JzΨ(x)|0〉

=

∫
d3x eipx vs(p)γ0[Jz,Ψ(x)]|0〉

=

∫
d3x eipx vs(p)γ0

[
i(x1∂2 − x2∂1)Ψ(x) − S12Ψ(x)

]
|0〉

= −
∫
d3x eipx vs(p)γ0S12Ψ(x)|0〉 (39.49)
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We have vs(p)γ0S12 = S12γ0vs(p) and S12γ0vs(p) = γ0 exp(iηK3)S12vs(0) = −1
2sγ

0vs(p).
Therefore

Jzd
†
s(p)|0〉 = 1

2s

∫
d3x eipx vs(p)γ0Ψ(x)|0〉

= 1
2s d

†
s(p)|0〉 . (39.50)

39.3) In problem 3.3, we showed that U(Λ)−1a(k)U(Λ) = a(Λ−1k) for a scalar, where a(k) is the
coefficient of eikx in the mode expansion. Since

∑
s′bs′(p)us′(p) is the coefficient of eipx in

the mode expansion of a Dirac or Majorana field, we similarly have

U(Λ)−1∑
s′bs′(p)us′(p)U(Λ) = D(Λ)

∑
s′bs′(Λ

−1p)us′(Λ
−1p) , (39.51)

where the matrix D(Λ) comes from the transformation rule for Ψ(x). Now multiply on the
left by us(p) and use eq. (38.17) to get

U(Λ)−1bs(p)U(Λ) =
∑
s′Rss′(Λ,p)bs′(Λ

−1p) , (39.52)

where
Rss′(Λ,p) ≡ 1

2m us(p)D(Λ)us′(Λ
−1p) . (39.53)

Similarly, from the coefficient of e−ipx we get (for a Dirac field)

U(Λ)−1d†s(p)U(Λ) =
∑
s′R

∗
ss′(Λ,p)d†s′(Λ

−1p) , (39.54)

where
R∗
ss′(Λ,p) ≡ − 1

2m vs(p)D(Λ)vs′(Λ
−1p) . (39.55)

To see that eq. (39.55) is the complex conjugate of eq. (39.53), we start with eq. (39.55), and
take the complex conjugate to get

Rss′(Λ,p) = − 1
2m vs(p)D(Λ)vs′(Λ−1p)

= − 1
2m vs′(Λ

−1p)D(Λ)vs(p)

= − 1
2m vs′(Λ

−1p)D(Λ−1)vs(p)

= − 1
2m [vs′(Λ

−1p)D(Λ−1)vs(p)]T

= − 1
2m vs(p)TD(Λ−1)T vs′(Λ

−1p)T

= − 1
2m vs(p)TCC−1D(Λ−1)TCC−1vs′(Λ

−1p)T

= + 1
2m us(p)D(Λ)us′(Λ

−1p) , (39.56)

where the last line follows from eqs. (38.34), (38.36) and (38.37); see also problem 40.1.
Eq. (39.40) then follows as in problem 3.3, but with the spin index acted on by R∗

ss′(Λ
−1,p).

39.4) a) Using eq. (39.51), we have

U(Λ)−1Ψ+(x)U(Λ) =

∫
d̃p U(Λ)−1∑

sbs(p)us(p)U(Λ) eipx

= D(Λ)

∫
d̃p
∑
sbs(Λ

−1p)us(Λ
−1p) eipx

= D(Λ)

∫
d̃p
∑
sbs(p)us(p) ei(Λp)x

= D(Λ)

∫
d̃p
∑
sbs(p)us(p) eip(Λ

−1x)

= D(Λ)Ψ+(Λ−1x) , (39.57)
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where the third equality follows from changing the integration variable from p to Λp, and using
the invariance of d̃p. The fourth equality uses (Λp)x = Λµνp

νxµ = pν(Λ−1)ν
µxµ = p(Λ−1x).

The same steps work for Ψ−(x).

b) [Ψ+(x)]† = Ψ+(x)β =
∑
s

∫
d̃p b†s(p)us(p)βe−ipx =

∑
s

∫
d̃p b†s(p)vT

s (p)Cβe−ipx = [Ψ−(x)]TCβ.

c) We have

[Ψ+
α (x),Ψ−

β (y)]∓ =
∑

s,s′

∫
d̃p d̃p′ [bs(p), b†s′(p

′)]∓ us(p)αvs′(p
′)β e

i(px−p′y)

=
∑

s

∫
d̃p us(p)αvs(p)β e

ip(x−y) . (39.58)

Now we use vT

s (p) = −us(p)C to get

[Ψ+
α (x),Ψ−

β (y)]∓ = −
∫
d̃p
∑
s[us(p)us(p)C]αβ e

ip(x−y)

= −
∫
d̃p [(−/p+m)C]αβ e

ip(x−y)

= −[(i/∂x +m)C]αβ

∫
d̃p eip(x−y)

= −[(i/∂x +m)C]αβ C(r) , (39.59)

where r2 = (x− y)2 > 0 and C(r) = mK1(mr)/4π
2r; see section 4.

d) Swapping x↔ y and α↔ β in the second line of eq. (39.59), we get

[Ψ+
β (y),Ψ−

α (x)]∓ = −
∫
d̃p [(−/p+m)C]βα e

−ip(x−y) . (39.60)

Using CT = −C and (γµC)T = CTγµT = (−C)(−C−1γµC) = γµC, we find that [(−/p+m)C]βα =
[(−/p −m)C]αβ . So

[Ψ+
β (y),Ψ−

α (x)]∓ = −
∫
d̃p [(−/p −m)C]αβ e

−ip(x−y)

= +[(i/∂x +m)C]αβ

∫
d̃p e−ip(x−y) . (39.61)

Since (x − y)2 > 0, we can work in a frame where x0 = y0; then p(x − y) = p·(x − y), and
we can change p to −p in the integrand to get

[Ψ+
β (y),Ψ−

α (x)]∓ = +[(i/∂x +m)C]αβ

∫
d̃p eip(x−y)

= +[(i/∂x +m)C]αβ C(r)

= −[Ψ+
α (x),Ψ−

β (y)]∓ . (39.62)

e) We note that [Ψ+
α (x),Ψ+

β (y)]∓, [Ψ−
α (x),Ψ−

β (y)]∓, [Ψ+
α (x),Ψ

−
β (y)]∓, [Ψ−

α (x),Ψ
+
β (y)]∓ vanish

because [b, b]∓ and [b†, b†]∓ vanish. Therefore, with Ψ(x) = Ψ+(x) + λΨ−(x), we have

[Ψα(x),Ψβ(y)]∓ = [Ψ+
α (x), λΨ−

β (y)]∓ + [λΨ−
α (x),Ψ+

β (y)]∓

= λ[Ψ+
α (x),Ψ−

β (y)]∓ ∓ λ[Ψ+
β (y),Ψ−

α (x)]∓

= λ(1 ± 1)[Ψ+
α (x),Ψ−

β (y)]∓ , (39.63)
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where we used [A,B]∓ = ∓[B,A]∓ to get the second line, and eq. (39.62) to get the third.
This can vanish if and only if we choose the lower sign, that is, if we use anticommutators.
We also have

[Ψ+
α (x),Ψ

+
β (y)]∓ =

∑

s,s′

∫
d̃p d̃p′ [bs(p), b†s′(p

′)]∓ us(p)αus′(p
′)β e

i(px−p′y)

=

∫
d̃p
∑
sus(p)αus(p)β e

ip(x−y)

=

∫
d̃p (−/p+m)αβ e

ip(x−y)

= (i/∂x +m)αβ C(r) , (39.64)

and

[Ψ−
α (x),Ψ

−
β (y)]∓ =

∑

s,s′

∫
d̃p d̃p′ [b†s(p), bs′(p

′)]∓ vs(p)αvs′(p
′)β e

−i(px−p′y)

= ∓
∫
d̃p
∑
svs(p)αvs(p)β e

−ip(x−y)

= ∓
∫
d̃p (−/p−m)αβ e

−ip(x−y)

= ±(i/∂x +m)αβ C(r) . (39.65)

Therefore

[Ψα(x),Ψβ(y)]∓ = [Ψ+
α (x),Ψ

+
β (y)]∓ + |λ|2[Ψ−

α (x),Ψ
−
β (y)]∓

= (1 ± |λ|2)(i/∂x +m)αβ C(r) , (39.66)

which vanishes only for the lower sign (anticommutators) and |λ| = 1.
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40 Parity, Time Reversal, and Charge Conjugation

40.1) We have P−1ΨAΨP = ΨβAβΨ, where A = Sµν = i
2γ

µγν or A = iSµνγ5 = −1
2γ

µγνγ5

(with µ 6= ν). Using βγi = −γiβ, βγ0 = γ0β, and β2 = 1, we have βγiγjβ = +γiγj and
βγ0γiβ = −γ0γi. Therefore

P−1ΨSµνΨP = +Pµ
ρPν

σΨS
ρσΨ . (40.49)

Using βγ5 = −γ5β, we have βγiγjγ5β = −γiγjγ5 and βγ0γiγ5β = +γ0γiγ5. Therefore

P−1ΨiSµνγ5ΨP = −Pµ
ρPν

σΨiS
ρσγ5Ψ . (40.50)

We have T−1ΨAΨT = ΨÃΨ, where we have defined Ã ≡ γ5C−1A∗Cγ5. Note that ÃB = ÃB̃.
From eq. (40.40), we have γ̃µ = −T µ

ργ
ρ and ĩγ5 = −iγ5. Therefore S̃µν = − i

2 γ̃
µγ̃ν =

−T µ
ρT ν

σS
ρσ and ˜Sµνiγ5 = S̃µν ĩγ5 = +T µ

ρT ν
σS

ρσiγ5, and so

T−1ΨSµνΨT = −T µ
ρT ν

σΨS
ρσΨ ,

T−1ΨiSµνγ5ΨT = +T µ
ρT ν

σΨiS
ρσγ5Ψ . (40.51)

We have C−1ΨAΨC = ΨC−1ATCΨ, and C−1(γµγν)TC = C−1γνTγµTC = (C−1γνTC)(C−1γµTC)
= (−γν)(−γµ) = γνγµ = −γµγν for µ 6= ν. Using C−1γT

5 C = γ5, we have C−1(γµγνγ5)
TC =

−γµγνγ5 for µ 6= ν. Therefore

C−1ΨSµνΨC = −ΨSµνΨ ,

C−1ΨiSµνγ5ΨC = −ΨiSµνγ5Ψ . (40.52)

Since both are odd under C, both must vanish for a Majorana field. Under CPT , we
have (CPT )−1ΨSµνΨCPT = (T P)µρ(T P)νσΨS

µνΨ. Since (T P)µρ = −δµρ, we see that
(CPT )−1ΨSµνΨCPT = ΨSµνΨ. The same applies to ΨSµνiγ5Ψ.
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41 LSZ Reduction for Spin-One-Half Particles

41.1) From problem 39.3, we have 〈p, s, q|U(Λ) =
∑
s′Rss′(Λ,p)〈Λ−1p, s′, q|, so

〈p, s, q|Ψ(x)|0〉 = 〈p, s, q|U(Λ)U(Λ)−1Ψ(x)U(Λ)U(Λ)−1|0〉
=
∑
s′Rss′(Λ,p)D(Λ)〈Λ−1p, s′, q|Ψ(Λ−1x)|0〉 . (41.31)

Similarly

〈p, s, q|Ψ(x)|0〉 = 〈p, s, q|U(Λ)U(Λ)−1Ψ(x)U(Λ)U(Λ)−1|0〉
=
∑
s′Rss′(Λ,p)〈Λ−1p, s′, q|Ψ(Λ−1x)|0〉D(Λ) . (41.32)

Setting q = − in eq. (41.31) and using eq. (41.24) on each side of eq. (41.31), we get

vs(p)e−ipx =
∑
s′Rss′(Λ,p)D(Λ)vs′(Λ

−1p)e−ipx . (41.33)

To verify that vs(p) satisfies this equation, we first cancel the e−ipx on each side, and then
use the the second line of eq. (39.56), Rss′(Λ,p) = − 1

2m vs′(Λ
−1p)D(Λ)vs(p), to get

vs(p)
?
= − 1

2m

∑
s′D(Λ)vs′(Λ

−1p)vs′(Λ
−1p)D(Λ)vs(p)

?
= − 1

2mD(Λ)(−Λ−1 /p−m)D(Λ)vs(p)

?
= − 1

2m(−/p−m)vs(p)

?
= − 1

2m(−m−m)vs(p)
√
= vs(p) . (41.34)

Note that if we replace vs in eq. (41.33) with us, the formula is not satisfied. Thus we have
verified eq. (41.24).

Setting q = + in eq. (41.32), and using eq. (41.25) of eq. (41.32), we get

us(p)e−ipx =
∑
s′Rss′(Λ,p)us′(Λ

−1p)D(Λ)e−ipx . (41.35)

To verify that us(p) satisfies this equation, we first cancel the e−ipx on each side, and then
use eq. (39.53), Rss′(Λ,p) = 1

2m us(p)D(Λ)us′(Λ
−1p), to get

us(p)
?
= 1

2m

∑
s′us(p)D(Λ)us′(Λ

−1p)us′(Λ
−1p)D(Λ)

?
= 1

2m us(p)D(Λ)(−Λ−1 /p+m)D(Λ)

?
= 1

2m us(p)(−/p+m)

?
= 1

2m us(p)(m+m)
√
= us(p) . (41.36)
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42 The Free Fermion Propagator

42.1) Multiply eq. (42.12) for S(x− y) on the right by C and take the transpose. In problem 39.4d
we showed that [(−/p + m)C]T = (−/p − m)C. If we then take p → −p and x ↔ y, we get
−S(y − x)C. Since C−1 = −C, this verifies eq. (42.24).
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43 The Path Integral for Fermion Fields

44 Formal Development of Fermionic Path Integrals
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45 The Feynman Rules for Dirac Fields

45.1) From section 40 we see that ΨΨ is even under P , T , ad C, while iΨγ5Ψ is odd under P and
T and even under C; in each case ϕ must have the same properties for the interaction term
to be invariant.

45.2) For e+e+ → e+e+, we have

−p1

−p2

−p′1

−p′2

p1−p′1

−p1

−p2

−p′2

−p′1

p1−p′2

iTe+e+→e+e+ = 1
i (ig)

2
[
(v1v

′
1)(v2v

′
2)

−t+M2
− (v1v

′
2)(v2v

′
1)

−u+M2

]
.

For ϕϕ → e+e−, we have

k1

k2

p′1

−p′2

p′1−k1

k2

k1

p′1

−p′2

k1−p′2

iTϕϕ→e+e− = 1
i (ig)

2 u ′
1

[−/p ′1 + /k1 +m

−t+m2
+

−/k1 + /p ′2 +m

−u+m2

]
v′2 .
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46 Spin Sums



Mark Srednicki Quantum Field Theory: Problem Solutions 77

47 Gamma Matrix Technology

47.1) If µ = ν, then γµγν = ±1, and we get Tr γ5 = 0; if µ 6= ν, then γ5γ
µγν ∝ gργσ, where µ, ν, ρ

and σ are all different; in particular, ρ 6= σ, so Tr[γργσ] = 0.

47.2) We have

γµ/a/bγµ = (−/aγµ − 2aµ)(−γµ/b− 2bµ)

= /aγµγµ/b+ 2/a/b+ 2/a/b+ 4(ab)

= 4(ab) − (d−4)/a/b , (47.22)

and

γµ/a/b/cγµ = (−/aγµ − 2aµ)/b(−γµ/c− 2cµ)

= /aγµ/bγµ/c+ 2/b/a/c+ 2/a/c/b+ 4(ac)/b

= (d−2)/a/b/c+ 2/b/a/c+ 2/a/c/b+ 4(ac)/b

= (d−2)/a/b/c+ 2/b/a/c+ 2[/a/c+ 2(ac)]/b

= (d−2)/a/b/c+ 2/b/a/c− 2/c/a/b

= (d−2)/a/b/c+ 2[−/a/b− 2(ab)]/c − 2/c/a/b

= (d−4)/a/b/c− 4(ab)/c − 2/c/a/b

= (d−4)/a/b/c+ 2/c [−2(ab) − /a/b ]

= 2/c/b/a+ (d−4)/a/b/c . (47.23)
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48 Spin-Averaged Cross Sections

48.1) (* Computes gamma matrix traces for the process 1+2 -> 3+4.

The format is, for example, tr[(-p1+m1*i).(-p2+m2*i)].

Note that * is used to multiply a matrix by a number,

and . is used to multiply two matrices.

Do not forget the . between matrices! Do not forget to write mass terms as m*i !

(If you do, the program will give you an incorrect answer without warning.)

Terms with gamma matrices with contracted vector indices can be written as

Sum[tr[ ... g[[mu]] ... g[[mu]] ... ],{mu,4}]//Simplify.
Do not use i or m or any other already named variable as an index! *)

(* the gamma matrices *)

i = IdentityMatrix[4];

g0 = {{ 0, 0, 1, 0},{0, 0, 0, 1},{ 1, 0, 0, 0},{ 0, 1, 0, 0}};
g1 = {{ 0, 0, 0, 1},{0, 0, 1, 0},{ 0,-1, 0, 0},{-1, 0, 0, 0}};
g2 = {{ 0, 0, 0,-I},{0, 0, I, 0},{ 0, I, 0, 0},{-I, 0, 0, 0}};
g3 = {{ 0, 0, 1, 0},{0, 0, 0,-1},{-1, 0, 0, 0},{ 0, 1, 0, 0}};
g5 = {{-1, 0, 0, 0},{0,-1, 0, 0},{ 0, 0, 1, 0},{ 0, 0, 0, 1}};
g = {g1,g2,g3,I*g0};
(* Particle energies in the CM frame *)

e1 = (s + m1^2 - m2^2)/(2 Sqrt[s]);

e2 = (s + m2^2 - m1^2)/(2 Sqrt[s]);

e3 = (s + m3^2 - m4^2)/(2 Sqrt[s]);

e4 = (s + m4^2 - m3^2)/(2 Sqrt[s]);

(* Magnitudes of 3-momenta in CM frame; k2=k1 and k4=k3 *)

k1 = (1/2)Sqrt[s-2(m1^2+m2^2)+(m1^2-m2^2)^2/s];

k3 = (1/2)Sqrt[s-2(m3^2+m4^2)+(m3^2-m4^2)^2/s];

(* 4-momenta dotted into gamma matrices; th is the CM scattering angle *)

p1 = -e1*g0 + k1*g3;

p2 = -e2*g0 - k1*g3;

p3 = -e3*g0 + k3*(Sin[th]*g1 + Cos[th]*g3);

p4 = -e4*g0 - k3*(Sin[th]*g1 + Cos[th]*g3);

(* Helicity 4-vectors dotted into gamma matrices; MASSIVE PARTICLES ONLY *)

h1 = (-k1*g0 + e1*g3)/m1;

h2 = (-k1*g0 - e2*g3)/m2;

h3 = (-k3*g0 + e3*(Sin[th]*g1 + Cos[th]*g3))/m3;

h4 = (-k3*g0 - e4*(Sin[th]*g1 + Cos[th]*g3))/m4;

(* ac = th in terms of the Mandelstam variables s and t *)

ac = ArcCos[(t - m1^2 - m3^2 + 2 e1 e3)/(2 k1 k3)];

(* Traces in terms of the Mandelstam variables s and t *)

tr[x ] := Sum[x[[j,j]],{j,4}]/.th->ac //Simplify
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48.2) From eq. (45.23), we have

Te+e−→ϕϕ = g2 v2

[
−/p1 + /k′1 +m

−t+m2
+

−/p1 + /k′2 +m

−u+m2

]
u1 , (48.31)

where t = −(p1 − k′1)
2 = −(p2 − k′2)

2 and u = −(p1 − k′2)
2 = −(p2 − k′1)

2. We can use
−/p1u1 = mu1 to simplify this to

T = g2 v2

[
/k′1 + 2m

−t+m2
+

/k′2 + 2m

−u+m2

]
u1 . (48.32)

We then have

T = g2 u1

[
/k′1 + 2m

−t+m2
+

/k′2 + 2m

−u+m2

]
v2 . (48.33)

Therefore

|T |2 = +
g4

(m2 − t)2
Tr
[
(v2v2)(/k

′
1 + 2m)(u1u1)(/k

′
1 + 2m)

]

+
g4

(m2 − u)2
Tr
[
(v2v2)(/k

′
2 + 2m)(u1u1)(/k

′
2 + 2m)

]

+
g4

(m2 − t)(m2 − u)
Tr
[
(v2v2)(/k

′
1 + 2m)(u1u1)(/k

′
2 + 2m)

]

+
g4

(m2 − t)(m2 − u)
Tr
[
(v2v2)(/k

′
2 + 2m)(u1u1)(/k

′
1 + 2m)

]
. (48.34)

Averaging over the initial spins, we get

〈|T |2〉 = g4
[ 〈Φtt〉
(m2 − t)2

+
〈Φuu〉

(m2 − u)2
+

〈Φtu〉 + 〈Φut〉
(m2 − t)(m2 − u)

]
, (48.35)

where

〈Φtt〉 = 1
4Tr

[
(−/p2 −m)(/k′1 + 2m)(−/p1 +m)(/k′1 + 2m)

]
,

〈Φuu〉 = 1
4Tr

[
(−/p2 −m)(/k′2 + 2m)(−/p1 +m)(/k′2 + 2m)

]
,

〈Φtu〉 = 1
4Tr

[
(−/p2 −m)(/k′1 + 2m)(−/p1 +m)(/k′2 + 2m)

]
,

〈Φut〉 = 1
4Tr

[
(−/p2 −m)(/k′2 + 2m)(−/p1 +m)(/k′1 + 2m)

]
. (48.36)

We have

〈Φtt〉 = 1
4Tr[/p2/k′1/p1/k′1] +

1
4m

2 Tr[4/p1/p2 + 2/p1/k′1 + 2/p1/k′1 − 2/p2/k
′
1 − 2/p2/k′1 − /k′1/k′1] −m2 Tr 1

= 2(p1k
′
1)(p2k

′
1) − (p1p2)k

′
1
2 −m2(4p1p2 + 4p1k

′
1 − 4p2k

′
1 − k′1

2) − 4m4

= 1
2(t−m2−M2)(u−m2−M2) − 1

2 (s−2m2)M2

−m2[4(m2−1
2s) + 2(t−m2−M2) − 2(u−m2−M2) +M2)] − 4m4

= −1
2 [−tu+m2(9t+ u) + 7m4 − 8m2M2 +M4] (48.37)
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and

〈Φtu〉 = 1
4Tr[/p2/k

′
1/p1/k

′
2] +

1
4m

2 Tr[4/p1/p2 + 2/p1/k
′
1 + 2/p1/k′2 − 2/p2/k′1 − 2/p2/k

′
2 − /k′1/k′2] −m2 Tr 1

= (p1k
′
1)(p2k

′
2) + (p1k

′
2)(p2k

′
1) − (p1p2)(k

′
1k

′
2)

−m2(4p1p2 + 2p1k
′
1 + 2p1k

′
2 − 2p2k

′
1 − 2p2k

′
2 − k′1k

′
2) − 4m4

= 1
4(t−m2−M2)2 + 1

4 (u−m2−M2)2 − 1
4(s−2m2)(s−2M2)

−m2[4(m2−1
2s) − (M2−1

2s)] − 4m4

= −1
2 [tu+ 3m2(t+ u) + 9m4 − 8m2M2 −M4] . (48.38)

The extra factor of one-half compared to the crossing-related process e−ϕ → e−ϕ arises
because we are summing (rather than averaging) over the final electron spin in the latter
case.

48.3) From eq. (45.24), we have

Te−e−→e−e− = g2
[
(u ′

1u1)(u
′
2u2)

−t+M2
− (u ′

2u1)(u
′
1u2)

−u+M2

]
, (48.39)

where t = −(p1 − p′1)
2 = −(p2 − p′2)

2 and u = −(p1 − p′2)
2 = −(p1 − k′1)

2. We also have

T = g2
[
(u1u

′
1)(u2u

′
2)

−t+M2
− (u1u

′
2)(u2u

′
1)

−u+M2

]
. (48.40)

Therefore

|T |2 = g4
[

Φss

(M2 − s)2
− Φst + Φts

(M2 − s)(M2 − t)
+

Φtt

(M2 − t)2

]
, (48.41)

where

Φtt = Tr
[
u1u1u

′
1u

′
1

]
Tr
[
u2u2u

′
2u

′
2

]
,

Φuu = Tr
[
u1u1u

′
2u

′
2

]
Tr
[
u2u2u

′
1u

′
1

]
,

Φtu = Tr
[
u1u1u

′
2u

′
2u2u2u

′
1u

′
1

]
,

Φut = Tr
[
u1u1u

′
1u

′
1u2u2u

′
2u

′
2

]
. (48.42)

Averaging over initial spins and summing over final spins, we get

〈Φtt〉 = 1
4Tr

[
(−/p1+m)(−/p ′1+m)

]
Tr
[
(−/p2+m)(−/p ′2+m)

]
, (48.43)

〈Φuu〉 = 1
4Tr

[
(−/p1+m)(−/p ′2+m)

]
Tr
[
(−/p2+m)(−/p ′1+m)

]
, (48.44)

〈Φtu〉 = 1
4Tr

[
(−/p1+m)(−/p ′2+m)(−/p2+m)(−/p ′1+m)

]
, (48.45)

〈Φut〉 = 1
4Tr

[
(−/p1+m)(−/p ′1+m)(−/p2+m)(−/p ′2+m)

]
. (48.46)
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We get 〈Φuu〉 from 〈Φtt〉 and 〈Φut〉 from 〈Φtu〉 by swapping p′1 ↔ p′2, which is equivalent to
swapping t↔ u. Computing the traces, we find

〈Φtt〉 = (t− 4m2)2 , (48.47)

〈Φtu〉 = −1
2tu+ 2m2s . (48.48)

48.4) a)
k

p1

−p2

For notational convenience we omit primes on the final momenta. The amplitude is then
T = gu1v2, and so T = gv2u1, |T |2 = g2 Tr[u1u1v2v2], 〈|T |2〉 = g2 Tr[(−/p1+m)(−/p2−m)] =
g2(−4p1p2 − 4m2) = 2g2(M2 − 4m2).

Using our results from problem 11.1b, we have Γ = (〈|T |2〉/16πM)(1 − 4m2/M2)1/2 =
(g2M/8π)(1 − 4m2/M2)3/2.

b) From eq. (38.28), with spin quantized along the x-axis we have

u1u1 = 1
2(1 − s1γ5/x)(−/p1 +m) ,

v2v2 = 1
2(1 − s2γ5/x)(−/p2 −m) , (48.49)

and we take p1 = −p2 = pẑ with p = 1
2M(1 − 4m2/M2)1/2. Thus we have

|T |2 = g2 Tr[u1u1v2v2]

= 1
4g

2 Tr[(1 − s1γ5/x)(−/p1 +m)(1 − s2γ5/x)(−/p2 −m)] . (48.50)

Since a trace with a single γ5 and three or fewer gamma matrices vanishes, we have

|T |2 = 1
4g

2 Tr[(−/p1 +m)(−/p2 −m) + s1s2(γ5/x)(−/p1 +m)(γ5/x)(−/p2 −m)] . (48.51)

Using γ5/a = −/aγ5 and γ2
5 = 1, we have

|T |2 = 1
4g

2 Tr[(−/p1 +m)(−/p2 −m) + s1s2/x(−/p1 −m)/x(−/p2 −m)] . (48.52)

Then using /a/b = −/b/a− 2ab along with xp1 = xp2 = 0 and /x/x = −x2 = −1, we have

|T |2 = 1
4g

2 Tr[(−/p1 +m)(−/p2 −m) − s1s2(−/p1 +m)(−/p2 −m)]

= 1
4g

2(1 + s1s2)Tr[(−/p1 +m)(−/p2 −m)]

= 1
4g

2(1 + s1s2)(−4p1p2 − 4m2)

= 1
2g

2(1 + s1s2)(M
2 − 4m2) . (48.53)

This vanishes if s1 = −s2 or if M = 2m. Reason: since ΨΨ has even parity, so must ϕ. An
electron-positron pair with orbital angular momentum ℓ has parity −(−1)ℓ. Thus ℓ must be
odd. A particle with zero three-momentum cannot have nonzero orbital angular momentum,
so |T |2 vanishes if M = 2m. Also, since the initial particle has spin zero, the total angular
momentum must be zero. Thus there must be spin angular momentum to cancel the orbital
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angular momentum, and so the spins must be aligned; thus |T |2 vanishes if the spins are
opposite.

c) For helicities s1 and s2, we have

p1 = (E, 0, 0,+p) ,

p2 = (E, 0, 0,−p) ,
z1 = (p, 0, 0,+E)/m ,

z2 = (p, 0, 0,−E)/m , (48.54)

with E = 1
2M and p = 1

2M(1 − 4m2/M2)1/2. We have z1p1 = z2p2 = 0, and so

|T |2 = 1
4g

2 Tr[(1 − s1γ5/z1)(−/p1 +m)(1 − s2γ5/z2)(−/p2 −m)]

= 1
4g

2 Tr[(−/p1 +m)(−/p2 −m) + s1s2/z1(−/p1 −m)/z2(−/p2 −m)]

= 1
4g

2 Tr[(−/p1 +m)(−/p2 −m) + s1s2/z1(−/p1 −m)/z2(−/p2 −m)]

= −g2(p1p2 +m2) + g2s1s2[(z1p2)(z2p1) − (z1z2)(p1p2) +m2z1z2] . (48.55)

From eq. (48.54), we see that z1p2 = z2p1 = −2Ep/m and z1z2 = p1p2/m
2 = −(E2 + p2)/m2.

Plugging these in, we find

|T |2 = 1
2g

2(1 + s1s2)(M
2 − 4m2) . (48.56)

There can be no orbital angular momentum parallel to the linear momentum, and so the z
component of the spin angular momentum must vanish. The total spin along the ẑ axis is
s1 − s2, and so the helicities must be the same to get a nonzero |T |2. Parity again explains
why |T |2 = 0 if M = 2m.

d) Now the amplitude is T = igu1γ5v2, and so T = igv2γ5u1, |T |2 = −g2 Tr[v2v2γ5u1u1γ5],
〈|T |2〉 = −g2 Tr[(−/p2−m)γ5(−/p1+m)γ5] = −g2 Tr[(−/p2−m)(/p1+m)] = −g2(4p1p2 − 4m2) =
2g2M2. This is larger by a factor of M2/(M2 − 4m2). It is larger because iΨγ5Ψ has odd
parity, and therefore so must ϕ. Thus the orbital angular momentum of the electron-positiron
pair must be even, and in particular must be zero, since ℓ = 2 or larger could not be cancelled
by spin. With zero orbital angular momentum, |T |2 need not vanish for zero electron three-
momentum, leading to a larger decay rate.

e) Redoing part (b) yields

|T |2 = −1
4g

2 Tr[(1 − s1γ5/x)(−/p1 +m)γ5(1 − s2γ5/x)(−/p2 −m) − γ5]

= −1
4g

2 Tr[(1 − s1γ5/x)(−/p1 +m)(1 + s2γ5/x)(/p2 −m)] (48.57)

Comparing with the second line of eq. (48.50), we see that eq. (48.57) has an extra overall
minus sign, s2 → −s2, and p2 → −p2. Therefore, comparing with the third line of eq. (48.53),
we get

|T |2 = −1
4g

2(1 − s1s2)(4p1p2 − 4m2)

= 1
2g

2(1 − s1s2)M
2 . (48.58)

This vanishes if s1 = s2. We know the electron-positron pair has even orbital angular mo-
mentum, and the total angular momentum must be zero. The only possibility is ℓ = 0 and
s = s1 + s2 = 0, so |T |2 vanishes if s1 = s2.
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Redoing part (c) yields the same changes. Therefore, comparing with the last line of eq. (48.55)
yields

|T |2 = g2(−p1p2 +m2) + g2s1s2[−(z1p2)(z2p1) + (z1z2)(p1p2) +m2z1z2]

= 1
2g

2(1 + s1s2)M
2 . (48.59)

As in part (c), there can be no orbital angular momentum parallel to the linear momentum,
and so the z component of the spin angular momentum must vanish. The total spin along
the ẑ axis is s1 − s2, and so the helicities must be the same to get a nonzero |T |2.

48.5) Let g ≡ c1GFfπ; the vertex factor is then (ig)(ikµ)γµ(1−γ5) = −g/k(1−γ5), where k is the four-
momentum of the pion. Thus we have iT = −gu1/k(1−γ5)v2, where p1 is the muon momentum
and p2 is the antineutrino momentum. We now use /k = /p1 + /p2, /p2(1−γ5) = (1+γ5)/p2,
u1/p1 = −mµu1, and /p2v2 = 0 to get T = −igmµu1(1−γ5)v2. Then T = +igmµv2(1+γ5)u1,
and |T |2 = g2m2

µTr[u1u1(1−γ5)v2v2(1+γ5)]. Summing over final spins yields

〈|T |2〉 = g2m2
µTr[(−/p1+mµ)(1−γ5)(−/p2)(1+γ5)]

= g2m2
µ Tr[(−/p1+mµ)(−/p2)(1+γ5)(1+γ5)]

= 2g2m2
µTr[(−/p1+mµ)(−/p2)(1+γ5)]

= 2g2m2
µTr[/p1/p2]

= 2g2m2
µ (−4p1p2)

= 4g2m2
µ [−(p1+p2)

2 + p2
1 + p2

2]

= 4g2m2
µ (−k2 + p2

1 + p2
2)

= 4g2m2
µ (m2

π −m2
µ + 0) . (48.60)

We then have Γ = 〈|T |2〉|p1|/8πm2
π, and |p1| = (m2

π −m2
µ)/2m

2
π, so

Γ =
g2m2

µ

4πm3
π

(m2
π −m2

µ)
2 . (48.61)

Using Γ = h̄c/cτ = (1.973 × 10−14 GeV cm)/(2.998 × 1010 cm/s)(2.603 × 10−8 s) = 2.528 ×
10−17 GeV, we find g = 1.058× 10−6 GeV, and so fπ = 93.14; after including electromagnetic
loop corrections, the result drops slightly to fπ = 92.4.
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49 The Feynman Rules for Majorana Fields

49.1) a) The hermitian conjugate term is
√

2eELΨPRX +
√

2eERΨPLX.

b) The contributing diagrams are
p1

−p2

p′1

−p′2

p1−p′1

p1

−p2

p′2

−p′1

p1−p′2

where the exchanged scalar can be either EL or ER. The arrows are drawn so that we use our
standard conventions for the Dirac electron-positron field; reversing the lower arrow on each
diagram and comparing the two shows that the relative sign is negative. The amplitude is

T = 2e2
[
(u ′

1PLu1)(v2PRv
′
2)

M2
L
− t

− (u ′
2PLu1)(v2PRv

′
1)

M2
L
− u

+
(u ′

1PRu1)(v2PLv
′
2)

M2
R
− t

− (u ′
2PRu1)(v2PLv

′
1)

M2
R
− u

]
.

(49.10)

c) In the limit |t|, |u| ≪M2 = M2
L

= M2
R
, we have

T =
2e2

M2

[
(u ′

1PLu1)(v2PRv
′
2) − (u ′

2PLu1)(v2PRv
′
1) + (u ′

1PRu1)(v2PLv
′
2) − (u ′

2PRu1)(v2PLv
′
1)
]
.

(49.11)
To facilitate squaring and summing over spins, it will be convenient to rewrite everything in
terms of u spinors by using vPL,Rv

′ = (vPL,Rv
′)T = v′TPT

L,Rv
T = u ′C−1PT

L,RC−1u = −u ′PL,Ru,
where the last equality follows from C−1 = −C and C−1γ5C = γ5. We then have

T = − 2e2

M2

[
(u ′

1PLu1)(u
′
2PRu2) − (u ′

2PLu1)(u
′
1PRu2) + (u ′

1PRu1)(u
′
2PLu2) − (u ′

2PRu1)(u
′
1PLu2)

]

= − 2e2

M2

[
tL − uL + tR − uR

]
. (49.12)

Barring, we get

T = − 2e2

M2

[
(u1PRu

′
1)(u2PLu

′
2) − (u1PRu

′
2)(u2PLu

′
1) + (u1PLu

′
1)(u2PRu

′
2) − (u1PLu

′
2)(u2PRu1)

]

= − 2e2

M2

[
tL − uL + tR − uR

]
. (49.13)

Then we have

|T |2 =
4e4

M4

[(
tLtL − tLuL + tLtR − tLuR + (t↔ u)

)
+ (L ↔ R)

]
. (49.14)

We can write

tLtL = Tr[(u1u1)PR(u′1u
′
1)PL] Tr[(u2u2)PL(u

′
2u

′
2)PR] , (49.15)

tLuL = Tr[(u1u1)PR(u′1u
′
1)PR(u2u2)PL(u

′
2u

′
2)PL] , (49.16)

tLtR = Tr[(u1u1)PR(u′1u
′
1)PR] Tr[(u2u2)PL(u

′
2u

′
2)PL] , (49.17)

tLuR = Tr[(u1u1)PR(u′1u
′
1)PL(u2u2)PL(u

′
2u

′
2)PR] . (49.18)
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Averaging over initial spins and summing over final spins, we get

〈tLtL〉 = 1
4Tr[(−/p1)PR(−/p ′1+m)PL] Tr[(−/p2)PL(−/p ′2+m)PR] , (49.19)

〈tLuL〉 = 1
4Tr[(−/p1)PR(−/p ′1+m)PR(−/p2)PL(−/p ′2+m)PL] , (49.20)

〈tLtR〉 = 1
4Tr[(−/p1)PR(−/p ′1+m)PR] Tr[(−/p2)PL(−/p ′2+m)PL] , (49.21)

〈tLuR〉 = 1
4Tr[(−/p1)PR(−/p ′1+m)PL(−/p2)PL(−/p ′2+m)PR] , (49.22)

where m ≡ mγ̃ is the photino mass (and we neglect the mass of the electron). We use
/pPR = PL/p, P 2

L,R = PL,R, PRPL = 0, and the cyclic property of the trace to get

〈tLtL〉 = 1
4Tr[(−/p1)(−/p ′1+m)PL] Tr[(−/p2)(−/p ′2+m)PR]

= 1
16Tr[/p1/p ′1] Tr[/p2/p ′2]

= (p1p
′
1)(p2p

′
2)

= 1
4(t−m2)2 , (49.23)

〈tLuL〉 = 1
4Tr[(−/p1)(−/p ′1+m)(−/p2)PL(−/p ′2+m)PL]

= 1
4mTr[(−/p1)(−/p ′1+m)(−/p2)PL]

= 1
8m

2 Tr[/p1/p2]

= −1
2m

2(p1p2)

= 1
4m

2s , (49.24)

〈tLtR〉 = 0 , (49.25)

〈tLuR〉 = 0 . (49.26)

Plugging these into eq. (49.14), we get

〈|T |2〉 =
e4

M4

[(
(t−m2)2 −m2s+ (t ↔ u)

)
+ (L ↔ R)

]

=
2e4

M4

[
(t−m2)2 + (u−m2)2 − 2m2s

]
. (49.27)

The cross section is
dσ

dΩCM

=
1

64π2s

|p′
1|

|p1|
〈|T |2〉 , (49.28)

with |p1| = 1
2s

1/2 and |p′
1| = 1

2(s−4m2)1/2. Also, t−m2 = 2p1p
′
1 = −2E1E

′
1+2|p1||p′

1| cos θ =

−1
2s + 1

2 [s(s−4m2)]1/2 cos θ, and similarly u − m2 = −1
2s − 1

2 [s(s−4m2)]1/2 cos θ. Plugging
these in, we get

dσ

dΩCM

=
e4

64π2M4
s(1 − 4m2/s)3/2 (1 + cos2 θ) . (49.29)

The (1 − 4m2/s)3/2 threshold behavior is characteristic of a final state with orbital angular
momentum ℓ = 1, as we saw in problem 48.4. The 1 + cos2 θ angular distribution is also
characteristic of ℓ = 1, since 1 + cos2 θ ∝∑

m=−1,0,1 |Y1m(θ, φ)|2; we say that this is a p-wave

process.
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50 Massless Particles and Spinor Helicity

50.1) a) −/p =
∑
s us(p)us(p) = u+(p)u+(p) + u−(p)u−(p) = |p〉[p| + |p]〈p|.

b) We have

u+(p′)(−/k)u+(p) = [p′|
(
|k〉[k| + |k]〈k|

)
|p〉 = 0 + [p′ k]〈k p〉 ,

u−(p′)(−/k)u−(p) = 〈p′|
(
|k〉[k| + |k]〈k|

)
|p] = 〈p′ k〉[k p] + 0 ,

u+(p′)(−/k)u−(p) = [p′|
(
|k〉[k| + |k]〈k|

)
|p] = 0 + 0 ,

u−(p′)(−/k)u+(p) = 〈p′|
(
|k〉[k| + |k]〈k|

)
|p〉 = 0 + 0 . (50.46)

50.2) a) We have

−φaφ∗ȧ = −2ω

(
sin2(1

2θ) − sin(1
2θ) cos(1

2θ)e
−iφ

− sin(1
2θ) cos(1

2θ)e
+iφ cos2(1

2θ)

)

= +ω

(−1 + cos θ sin θ e−iφ

sin θ e+iφ −1 − cos θ

)

=

(−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
. (50.47)

b) From the solution to problem 38.1, with p̂ = ẑ, we have

exp(iηp̂·K) =

(
(cosh 1

2η) − (sinh 1
2η)σ3 0

0 (cosh 1
2η) + (sinh 1

2η)σ3

)
. (50.48)

In the η → ∞ limit, we have cosh 1
2η ≃ sinh 1

2η ≃ (E/2m)1/2. Eq. (50.48) becomes

exp(iηp̂·K) = (E/2m)1/2
(

1 − σ3 0

0 1 + σ3

)

= (2E/m)1/2




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 . (50.49)

With u±(0) given by eq. (38.6), we get u+(p) = (2E)1/2




0
0
1
0


 and u−(p) = (2E)1/2




0
1
0
0


.

For θ = 0, this agrees with eqs. (50.8), (50.9), and (50.13).

50.3) The left-hand side of eq. (50.36) is manifestly cyclically symmetric on q → r → s→ q. To see
that it is anitsymmetric on (say) q ↔ r, we use 〈a b〉 = −〈b a〉 to get

〈p r〉〈q s〉 + 〈p q〉〈s r〉 + 〈p s〉〈r q〉 = −〈p r〉〈s q〉 − 〈p q〉〈r s〉 − 〈p s〉〈q r〉 , (50.50)
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and note that the right-hand side is minus the left-hand side of eq. (50.36). Thus it is com-
pletely antisymmetric on q, r, s, and linear in each of the corresponding twistors. Since each
twistor has only two components, the result must be zero.

50.4) We use PL(−/p) = u−(p)u−(p) = |p]〈p| and −/q = |q]〈q| + |q〉[q|, etc., to get

1
2(1−γ5)/p/q/r/s = |p]〈p|

(
|q]〈q| + |q〉[q|

)(
|r]〈r| + |r〉[r|

)(
|s]〈s| + |s〉[s|

)

= |p] 〈p q〉 [q r] 〈r s〉 [s| . (50.51)

Taking the trace gives Tr 1
2(1−γ5)/p/q/r/s = 〈p q〉 [q r] 〈r s〉 [s p]. The traces are standard and

yield 2(pq)(rs) − 2(pr)(qs) + 2(ps)(qr) + 2iεµνρσpµqνrρsσ.

50.5) a) These are all vectors, and we note that no nonzero four-vector is orthogonal to every
massless four vector. Therefore it is enough to verify eqs. (50.38–42) contracted with an
arbitrary massless four-vector qµ. Then we set −/q = |q]〈q| + |q〉[q|, and use the usual inner
products along with eqs. (50.20), (50.21), and (50.24). For example, to verify eq. (50.38),
we use 〈p|/q|k] = −〈p q〉 [q k] = −[k q] 〈q p〉 = [k|/q|p〉. To verify eq. (50.40), we use 〈p|/q|p] =
−〈p q〉 [q p] = 2pµqµ.

b) Again this follows immediately from contracting all the gamma matrices with arbitrary
massless four-vectors, and using −/q = |q]〈q| + |q〉[q|, followed by the usual inner products.

c) We have 〈p|γµ|q] = u−(p)γµu−(q) = φ∗ȧσ̄
ȧa
µ κa. Contracting with −1

2γ
µ gives

−1
2〈p|γµ|q]γµ = −1

2φ
∗
ȧσ̄

ȧa
µ κa

(
0 σµcċ

σ̄µḃb 0

)

= −1
2φ

∗
ȧκa




0 σ̄ȧaµ σ
µ
cċ

σ̄ȧaµ σ̄
µḃb 0




= −1
2φ

∗
ȧκa

(
0 −2δacδ

ȧ
ċ

−2εȧḃεab 0

)

=

(
0 κcφ

∗
ċ

φ∗ḃκb 0

)

= u−(q)u−(p) + u+(p)u+(q)

= |q]〈p| + |p〉[q| . (50.52)

We similarly get eq. (50.44), and then eq. (50.45) follows immediately.
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51 Loop Corrections in Yukawa Theory

51.1) We rewrite eq. (45.2) in the shorthand notation

Z = exp
(
igϕxδxGδ̄x

)
exp

(
iη̄ySyzηz

)
, (51.55)

where δx = δ/δη(x), δ̄x = δ/δη̄(x), spinor indices are suppressed, and spatial indices are
implicitly integrated; G is a spin matrix which is either 1 or iγ5, depending on which version
of the theory we consider. Also, since we are interested in the fermion loop, we have replaced
(1/i)δ/δJ(x) with an external field ϕ(x). A single closed loop with n external ϕ lines will
correspond to a term of the form gn ϕ1 . . . ϕn TrS12GS23G . . . Sn−1,nG. This is what we would
get from the Feynman rules without an extra −1 from the closed loop; the i from each vertex
is cancelled by the 1/i from each internal fermion line. To see that we do get the −1, consider
the case of n = 2; the relevant factors are i4g2 ϕ1ϕ2 (δ1Gδ̄1)(δ2Gδ̄2)(η̄xSxyηy)(η̄zSzwηw). We
pull the δ2Gδ̄2 through the η̄x, and allow it to act on ηyη̄z; we have δ2δ̄2ηyη̄z = −δ2ηy δ̄2η̄z =
−δ2yδ2z . We now have −g2 ϕ1ϕ2 (δ1Gδ̄1)η̄x(Sx2GS2w)ηw = −g2 ϕ1ϕ2 TrS12GS21G. This
pattern persists at larger n; we get an extra minus sign from the first vertex that we pull
through, and then the remaining ones all give plus signs. (Note that we are only considering
terms corresponding to a single closed fermion loop.)

51.2) For p = p′ = 0, we have Ñ = Ñ0 = m2γ5 and D = D0 = (1−x3)m
2 + x3M

2. Since there is
no dependence on x1 and x2,

∫
dF3 becomes 2

∫ 1
0 dx3 (1−x3). Performing the integral over x3

yields

iVY (0, 0) = −Zggγ5 +
g3

8π2

[
1

ε
+

1

2
− m2 ln(M/m)

M2 −m2
− ln(M/µ)

]
γ5 . (51.56)

Requiring this to equal −gγ5 yields

Zg = 1 +
g2

8π2

[
1

ε
+

1

2
− m2 ln(M/m)

M2 −m2
− ln(M/µ)

]
. (51.57)

This then yields

VY (p′, p) =

{
1 +

g2

8π2

[
−3

4
+
m2 ln(M/m)

M2 −m2
+

∫
dF3

(
−1

2 ln(D/M2) +
Ñ

4D

)]}
igγ5 , (51.58)

which is finite and independent of µ.

51.3) Consider the scalar propagator. The diagrams in fig. 51.1 all contribute. The fermion loop
now has a factor of Tr S̃(/ℓ+/k)S̃(/ℓ) instead of Tr S̃(/ℓ+/k)iγ5S̃(/ℓ)iγ5; this changes N , given by
eq. (51.14), from (ℓ+k)ℓ+m2 to (ℓ+k)ℓ−m2. We then find ΠΨ loop(k

2) = −(g2/4π2ε)(k2 +
6m2). The ϕ loop with the ϕ4 vertex obviously gives the same result as before. There is now
also a new ϕ loop diagram due to the ϕ3 vertex; it is given by

Πϕ3 loop = 1
2κ

2µ̃ε
∫

ddℓ

(2π)d
∆̃((ℓ+k)2)∆̃(ℓ2) , (51.59)
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where d = 4−ε. The divergent part is Πϕ3 loop = κ2/16π2ε (note that κ has dimensions of
mass for d = 4). Choosing Zϕ and ZM to cancel the divergences yields

Zϕ = 1 − g2

4π2

1

ε
, (51.60)

ZM = 1 +

(
λ

16π2
− 3g2

2π2

m2

M2
+

κ2

16π2

)
1

ε
. (51.61)

The loop correction to the fermion propagator now has a factor of S(/p+/ℓ) rather than
iγ5S̃(/p+/ℓ)iγ5; this changes N , given by eq. (51.30), from /q + (1−x)/p+m to /q + (1−x)/p−m.
Thus we get Σ1 loop = −(g2/16π2ε)(/p− 2m), and so

ZΨ = 1 − g2

16π2

1

ε
, (51.62)

Zm = 1 +
g2

8π2

1

ε
. (51.63)

For the loop correction to the Yukawa coupling, again a factor of iγ5 is removed from each
vertex. We then find that N = q2 + Ñ instead of eq. (51.45); Ñ is different, but does not
contribute to the divergent part. So

Zg = 1 +
g2

8π2

1

ε
. (51.64)

There is also a new diagram where the external ϕ line attaches to the ϕ line in the loop
via the new ϕ3 vertex; however this diagram is finite. The story is the same for the loop
correction to the ϕ4 vertex; the divergent part of the fermion loop diagram is the same, and
new diagrams with the ϕ3 vertex are all finite. Thus the result is the same as eq. (51.53),

Zλ = 1 +

(
3λ

16π2
− 3g4

π2λ

)
1

ε
. (51.65)

Finally, we have to consider corrections to the new ϕ3 vertex. There is a fermion loop diagram
that yields

iV3,Ψ loop = (−1)(ig)3
(

1
i

)3∫ d4ℓ

(2π)4
Tr S̃(/ℓ)S̃(/ℓ+/k1)S̃(/ℓ−/k2) + (k2 ↔ k3) . (51.66)

We can set the external momenta to zero; then the numerator becomes Tr (−/ε+m)3 =
3mTr/ℓ2 + m3 Tr 1 = −12mℓ2 + 4m3, and only the ℓ2 term contributes to the divergent
part. The result is then V3,Ψloop = 2(−1)(g3)(−12m)/8π2ε = 3g3m/π2ε. There is also a
ϕ-loop diagram, with one ϕ3 vertex and one ϕ4 vertex; there are three inequivalent permu-
tations of the external momenta and a symmetry factor of S = 2, and we have V3,ϕ loop =
(1
2 )(3)(−iλ)(iκ)(1/i)2(1/8π2ε) = −3λκ/16π2ε. Thus we find

Zκ = 1 +

(
3λ

16π2
− 3g3m

π2κ

)
1

ε
. (51.67)
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52 Beta Functions in Yukawa Theory

52.1) We have

γϕ ≡ 1

2

d lnZϕ
d lnµ

=
1

2

(
−1

2g
∂

∂g
− λ

∂

∂λ

)
ε lnZϕ

=
g2

8π2
, (52.17)

γΨ ≡ 1

2

d lnZΨ

d lnµ

=
1

2

(
−1

2g
∂

∂g
− λ

∂

∂λ

)
ε lnZΨ

=
g2

32π2
, (52.18)

γm ≡ d

d lnµ
lnm

=
d

d lnµ

[
lnm0 − ln

(
Zm/ZΨ

)]

=

(
1
2g

∂

∂g
+ λ

∂

∂λ

)
ε ln

(
Zm/ZΨ

)

=
g2

16π2
, (52.19)

γM ≡ d

d lnµ
lnM

=
d

d lnµ

[
lnM0 − ln

(
Z

1/2
M /Z1/2

ϕ

)]

=

(
1
2g

∂

∂g
+ λ

∂

∂λ

)
ε ln

(
Z

1/2
M /Z1/2

ϕ

)

=
g2

8π2

(
1 − 2

m2

M2

)
+

λ

32π2
. (52.20)

52.2) The values of Zϕ, ZΨ, Zg, and Zλ are the same in both theories, so the beta functions for g
and λ and the anomalous dimensions of the fields are the same. To compute the beta function

for κ, we note that κ0 = ZκZ
−3/2
ϕ µ̃ε/2κ. If we let ln(ZκZ

−3/2
ϕ ) =

∑
nKn/ε

n, then

βκ = κ

(
1
2g

∂

∂g
+ λ

∂

∂λ
+ 1

2κ
∂

∂κ

)
K1

=
1

16π2

(
6g2κ+ 3λκ− 48g3m

)
. (52.21)



Mark Srednicki Quantum Field Theory: Problem Solutions 91

The values of Zm and ZM are different in the two theories, and we must also include the
effect of the κ coupling; we have

γm =

(
1
2g

∂

∂g
+ λ

∂

∂λ
+ 1

2κ
∂

∂κ

)
ε ln

(
Zm/ZΨ

)

=
3g2

16π2
, (52.22)

γM =

(
1
2g

∂

∂g
+ λ

∂

∂λ
+ 1

2κ
∂

∂κ

)
ε ln

(
Z

1/2
M /Z1/2

ϕ

)

=
g2

8π2

(
1 − 6

m2

M2

)
+

κ2

32π2
+

λ

32π2
. (52.23)

52.3) a&b) If dg/d lnµ = b0g
3/16π2 and dλ/d lnµ = (c0g

4 + c1λg
2 + c2λ

2)/16π2, then for ρ ≡ λ/g2

we have (by the chain rule)

dρ

d lnµ
=

g2

16π2

(
c0 + (c1−2b0)ρ+ c2ρ

2
)

=
g2

16π2
c2(ρ− ρ∗+)(ρ− ρ∗−) , (52.24)

where ρ∗± = [2b0−c1 ±
√

(c1−2b0)2−4c0c2 ]/2c2. Eq. (52.24) is better because it is separable.
For our case, b0 = 5, c0 = −48, c1 = 8, c2 = 3, and ρ∗± = (1±

√
145)/3 = −3.68 and +4.32.

c) Since g is small, we can treat it as approximately constant. For ρ = 0, βρ is positive, and
so ρ increases as µ increases, and approaches ρ∗+ from below; ρ decreases as µ decreases, and
approaches ρ∗− from above.

d) Since the initial value of ρ is greater than ρ∗+, βρ is negative, and ρ decreases as µ increases,
approaching ρ∗+ from above; ρ increases as µ decreases, and grows without bound.

e) Since the initial value of ρ is less than ρ∗−, βρ is negative, and ρ decreases as µ increases,
growing more and more negative without bound; ρ increases as µ decreases, and approaches
ρ∗− from below.

f&g) We have dρ/dg = βρ/βg = (c2/b0)(ρ − ρ∗+)(ρ − ρ∗−)/g2. This can be separated and
integrated to get

∫
dρ

(ρ− ρ∗+)(ρ− ρ∗−)
=
c2
b0

∫
dg

g

1

ρ∗+ − ρ∗−
ln

∣∣∣∣∣
ρ− ρ∗+
ρ− ρ∗−

∣∣∣∣∣ =
c2
b0

ln |g/g0| , (52.25)

which yields the claimed result with ν = b0/[c2(ρ
∗
+ − ρ∗−)] = 5/2

√
145 = 0.208. Trajectories

with ρ < ρ∗+ flow towards (ρ, g) = (ρ∗−,∞) as µ increases (towards the ultraviolet). Trajec-
tories with ρ > ρ∗− flow towards (ρ, g) = (ρ∗+, 0) as µ decreases (towards the infrared). This
explains the names.



Mark Srednicki Quantum Field Theory: Problem Solutions 92

53 Functional Determinants

54 Maxwell’s Equations
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55 Electrodynamics in Coulomb Gauge

55.1) The derivation is essentially the same as in problem 3.1 for a scalar field, with an extra three-
vector index on the field and its conjugate momentum that is contracted with a polarization
vector. Using eq. (55.13), we see that the kikj term in eq. (55.20) vanishes when contracted
with the polarization vectors; using eq. (55.14), we see that the δij term yields a factor of δλ′λ.

55.2) Again, this mimics the scalar field case done in section 3. The only difference is that there is
a product of polarization vectors that, using eq. (55.14), yields a factor of δλ′λ in the nonzero
term.
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56 LSZ Reduction for Photons

56.1) The derivation is the same as in problem 8.4, with the polarization vectors simply an addi-
tional factor.
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57 The Path Integral for Photons



Mark Srednicki Quantum Field Theory: Problem Solutions 96

58 Spinor Electrodynamics

58.1) From section 40, with jµ = eΨγµΨ, we have

P−1jµ(x, t)P = +Pµ
νj
ν(−x, t) ,

T−1jµ(x, t)T = −T µ
νj
ν(x,−t) ,

C−1jµ(x, t)C = −jν(x, t) . (58.22)

For L to be invariant, we then must have

P−1Aµ(x, t)P = +Pµ
νA

ν(−x, t) ,

T−1Aµ(x, t)T = −T µ
νA

ν(x,−t) ,
C−1Aµ(x, t)C = −Aµ(x, t) . (58.23)

58.2) Such an amplitude would come from a correlation function 〈0|TAµ1(x1) . . . A
µn(xn)|0〉 inserted

into the LSZ formula. To see that this vanishes, we insert 1 = CC−1 between each pair of
fields, and on the far left and far right. Since the vacuum is unique, it must be invariant
under charge conjugation: C−1|0〉 = |0〉 and 〈0|C = 〈0|. Using C−1AµC = −Aµ from the
previous problem, we see that this correlation function is equal to (−1)n times itself, and
so must vanish if n is odd. Note that this means that the amplitude vanishes even if the
photon momenta are off shell, so it also does not appear as a subdiagram in some other more
complicated process.
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59 Scattering in Spinor Electrodynamics

59.1) For e−γ → e−γ, the diagrams are
p1 p1+k2 p′1

k2 k′2

p1 p1−k′2 p′1

k2 k′2

and the amplitude is
T = e2ε∗µ2 εν2′ u

′
1Aµνu1 , (59.26)

where

Aµν ≡ γν(−/p1−/k2+m)γµ
−s+m2

+
γµ(−/p1+/k′2+m)γν

−u+m2
. (59.27)

We have Aµν = Aνµ, and so
T = e2ερ2ε

∗σ
2′ u1Aσρu

′
1 . (59.28)

Thus
|T |2 = e4(ε∗µ2 ερ2)(ε

ν
2′ε

∗σ
2′ )Tr[Aµν(u1u1)Aσρ(u

′
1u

′
1)] . (59.29)

Averaging over initial and summing over final spins and polarizations yields

〈|T |2〉 = e4 Tr[Aµν(−/p1+m)Aνµ(−/p ′1+m)]

= e4
[ 〈Φss〉

(m2 − s)2
+

〈Φsu〉 + 〈Φus〉
(m2 − s)(m2 − u)

+
〈Φuu〉

(m2 − u)2

]
, (59.30)

where

〈Φss〉 = 1
4Tr

[
γν(−/p1−/k2+m)γµ(−/p1+m)γµ(−/p1−/k2+m)γν(−/p ′1+m)

]
,

〈Φuu〉 = 1
4Tr

[
γµ(−/p1+/k′2+m)γν(−/p1+m)γν(−/p1+/k′2+m)γµ(−/p ′1+m)

]
,

〈Φsu〉 = 1
4Tr

[
γν(−/p1−/k2+m)γµ(−/p1+m)γν(−/p1+/k′2+m)γµ(−/p ′1+m)

]
,

〈Φus〉 = 1
4Tr

[
γµ(−/p1+/k′2+m)γν(−/p1+m)γµ(−/p1−/k2+m)γν(−/p ′1+m)

]
. (59.31)

Examinging 〈Φss〉 and 〈Φuu〉, we see that they are transformed into each other by k2 ↔ −k′2,
which is equivalent to s ↔ u. The same is true of 〈Φsu〉 and 〈Φus〉. Thus we need only
compute 〈Φss〉 and 〈Φsu〉, and then take s ↔ u to get 〈Φuu〉 and 〈Φus〉. Using γµγµ = −4,
γµ/pγµ = 2/p, and Tr[/p/q] = −4pq, we have

〈Φss〉 = 1
4Tr[(−/p1−/k2+m)(−2/p1−4m)(−/p1−/k2+m)(−2/p ′1−4m)]

= Tr[(/p1+/k2)/p1(/p1+/k2)/p
′
1]

+m2 Tr[4(/p1+/k2)(/p1+/k2) − 4/p1(/p1+/k2) − 4/p ′1(/p1+/k2) + /p1/p ′1]

+ 4m4 Tr 1

= 8[p1(p1+k2)][p
′
1(p1+k2)] − 4(p1+k2)

2p1p
′
1

− 16m2(p1+k2)
2 + 16m2p1(p1+k2) + 16m2p′1(p1+k2) − 4m2p1p

′
1

+ 16m4 . (59.32)
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Now we use

(p1+k2)
2 = −s ,

p1p
′
1 = −1

2(t− 2m2) = −1
2(s+ u) ,

p1(p1+k2) = −1
2(s+m2) ,

p′1(p1+k2) = −1
2(s+m2) . (59.33)

The last equality follows from p1 + k2 = p′1 + k′2 and s = −(p′1 + k′2)
2. For later use we note

also that

p1(p1−k′2) = −1
2(u+m2) ,

p′1(p1−k′2) = −1
2(u+m2) ,

(p1+k2)(p1−k′2) = −m2 . (59.34)

We then have

〈Φss〉 = 2(s+m2)2 − 2s(s + u) + 16m2s− 16m2(s+m2) + 2m2(s+ u) + 16m4 . (59.35)

This simplifies to
〈Φss〉 = −2[su−m2(3s + u) −m4] , (59.36)

and swapping s and u yields

〈Φuu〉 = −2[su−m2(3u+ s) −m4] . (59.37)

For 〈Φsu〉, we have

〈Φsu〉 = 1
4Tr[γν(/p1+/k2)γµ/p1γ

ν(/p1−/k′2)γ
µ/p ′1]

+ 1
4m

2 Tr[γν(/p1+/k2)γµ/p1γ
νγµ]

+ 1
4m

2 Tr[γν(/p1+/k2)γµγ
ν(/p1−/k′2)γ

µ]

+ 1
4m

2 Tr[γν(/p1+/k2)γµγ
νγµ/p ′1]

+ 1
4m

2 Tr[γνγµ/p1γ
ν(/p1−/k′2)γ

µ]

+ 1
4m

2 Tr[γνγµ/p1γ
νγµ/p ′1]

+ 1
4m

2 Tr[γνγµγ
ν(/p1−/k′2)γ

µ/p ′1]

+ 1
4m

4 Tr[γνγµγ
νγµ] . (59.38)

We use γν /pγν = 2/p, γν /p/qγν = 4pq, γν /p/q/rγν = 2/r/q/p, and γµγ
µ = −4 to get

〈Φsu〉 = 1
2Tr[/p1γµ(/p1+/k2)(/p1−/k′2)γ

µ/p ′1]

+ 1
2m

2 Tr[(/p1+/k2)γµ/p1γ
µ]

+m2(p1+k2)µTr[(/p1−/k′2)γ
µ]

+ 1
2m

2 Tr[γν(/p1+/k2)γ
ν /p ′1]

+ 1
2m

2 Tr[γν /p1γ
ν(/p1−/k′2)]

+m2 p1µTr[γµ/p ′1]

+ 1
2m

2 Tr[γµ(/p1−/k′2)γ
µ/p ′1]

− 2m4 Tr 1 . (59.39)
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Now we use γν /pγν = 2/p and γν /p/qγν = 4pq to get

〈Φsu〉 = 2(p1+k2)(p1−k′2)Tr[/p1/p ′1]

+m2 Tr[(/p1+/k2)/p1]

+m2 Tr[(/p1−/k′2)(/p1+/k2)]

+m2 Tr[(/p1+/k2)/p
′
1]

+m2 Tr[/p1(/p1−/k′2)]

+m2 Tr[/p1/p ′1]

+m2 Tr[(/p1−/k′2)/p
′
1]

− 2m4 Tr 1 . (59.40)

Taking the traces and using eqs. (59.33) and (59.34), we get

〈Φsu〉 = 4m2[−(s+u) + 1
2(s+m2) +m2 + 1

2(s+m2) + 1
2(u+m2) + 1

2(s+u) + 1
2(u+m2)− 2m2].

(59.41)
Using s+ t+ u = 2m2, this simplifies to

〈Φss〉 = −2m2(t− 4m2) , (59.42)

and swapping s and u yields
〈Φuu〉 = −2m2(t− 4m2) . (59.43)

59.2) For e+e− → e+e−, the diagrams are

p1

−p′2

p′1

−p2

p1−p′1

p1

−p′2

−p2

p′1

p1+p2

and the amplitude is

T = e2
[
(u ′

1γ
µu1)(v2γµv

′
2)

−t − (v2γ
µu1)(u

′
1γµv

′
2)

−s

]
. (59.44)

We then have

T = e2
[
(u1γ

νu′1)(v
′
2γνv2)

−t − (u1γ
νv2)(v

′
2γνu

′
1)

−s

]
. (59.45)

Thus
|T |2 = e4

[
Φtt/t

2 + (Φts + Φst)/ts + Φss/s
2
]
, (59.46)

where

Φtt = Tr[(u1u1)γ
ν(u′1u

′
1)γ

µ] Tr[(v2v2)γµ(v
′
2v

′
2)γν ] ,

Φss = Tr[(u1u1)γ
ν(v2v2)γ

µ] Tr[(u′1u
′
1)γµ(v

′
2v

′
2)γν ] ,

Φts = Tr[(u1u1)γ
ν(v2v2)γµ(v

′
2v

′
2)γν(u

′
1u

′
1)γ

µ] ,

Φst = Tr[(u1u1)γ
ν(u′1u

′
1)γµ(v

′
2v

′
2)γν(v2v2)γ

µ] . (59.47)
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Averaging over initial spins and summing over final spins yields

〈Φtt〉 = 1
4Tr[(−/p1+m)γν(−/p ′1+m)γµ] Tr[(−/p2−m)γµ(−/p ′2−m)γν ] ,

〈Φss〉 = 1
4Tr[(−/p1+m)γν(−/p2−m)γµ] Tr[(−/p ′1+m)γµ(−/p ′2−m)γν ] ,

〈Φts〉 = 1
4Tr[(−/p1+m)γν(−/p2−m)γµ(−/p ′2−m)γν(−/p ′1+m)γµ] ,

〈Φst〉 = 1
4Tr[(−/p1+m)γν(−/p ′1+m)γµ(−/p ′2−m)γν(−/p2−m)γµ] . (59.48)

We see that exchanging p′1 ↔ −p2, which is equivalent to t↔ s, exchanges 〈Φtt〉 ↔ 〈Φss〉 and
〈Φts〉 ↔ 〈Φst〉. We have

〈Φtt〉 = 1
4

(
Tr[/p1γ

ν /p ′1γ
µ] +m2 Tr[γνγµ]

)(
Tr[/p2γµ/p ′2γν ] +m2 Tr[γµγν ]

)

= 4
(
pν1p

′
1
µ + pµ1p

′
1
ν − (p1p

′
1 +m2)gµν

)(
p2µp

′
2ν + p2νp

′
2µ − (p2p

′
2 +m2)gνµ

)

= 4[2(p1p
′
2)(p

′
1p2) + 2(p1p2)(p

′
1p

′
2) − 2(p1p

′
1)(p2p

′
2 +m2) − 2(p2p

′
2)(p1p

′
1 +m2)

+ 4(p1p
′
1 +m2)(p2p

′
2 +m2)] . (59.49)

Now we use

p1p2 = p′1p
′
2 = −1

2(s− 2m2) ,

p1p
′
1 = p2p

′
2 = +1

2(t− 2m2) ,

p1p
′
2 = p′1p2 = +1

2(u− 2m2) = 1
2(2m2 − s− t) (59.50)

and simplify to get
〈Φtt〉 = 2(t2 + 2st+ 2s2 − 8m2s+ 8m4) . (59.51)

Swapping t↔ s yields

〈Φss〉 = 2(s2 + 2st+ 2t2 − 8m2t+ 8m4) . (59.52)

Next we have

〈Φts〉 = 1
4Tr[/p1γ

ν /p2γµ/p ′2γν /p ′1γ
µ]

− 1
4m

2 Tr[/p1γ
ν /p2γµγνγ

µ]

− 1
4m

2 Tr[/p1γ
νγµ/p ′2γνγ

µ]

+ 1
4m

2 Tr[/p1γ
νγµγν /p ′1γ

µ]

+ 1
4m

2 Tr[γν /p2γµ/p ′2γνγ
µ]

− 1
4m

2 Tr[γν /p2γµγν /p ′1γ
µ]

− 1
4m

2 Tr[γνγµ/p ′2γν /p ′1γ
µ]

+ 1
4m

4 Tr[γνγµγνγ
µ] . (59.53)

In the first line, /p1γ
ν /p2γµ/p ′2γν /p ′1γ

µ = 2/p1/p ′2γµ/p2/p ′1γ
µ = (2/p1/p ′2)(4p2p

′
1). In the second line,

/p1γ
ν /p2γµγνγ

µ = 4/p1p2µγ
µ = 4/p1/p2; the next five lines can be similarly simplified. In the last

line, γνγµγνγ
µ = 2γµγ

µ = −8. Taking traces yields

〈Φts〉 = −8(p1p
′
2)(p

′
1p2) + 4m2(p1p2 + p1p

′
2 − p1p

′
1 − p2p

′
2 + p′1p2 + p′1p

′
2) − 8m4 , (59.54)
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and plugging in eq. (59.50), we find

〈Φts〉 = −2(u2 − 8m2u+ 12m4) . (59.55)

Swapping t↔ s, we get
〈Φst〉 = −2(u2 − 8m2u+ 12m4) . (59.56)

59.3) For e−e− → e−e−, the diagrams are

p1

p2

p′1

p′2

p1−p′1

p1

p2

p′2

p′1

p1−p′2

and the amplitude is

T = e2
[
(u ′

1γ
µu1)(u

′
2γµu2)

−t − (u ′
2γ
µu1)(u

′
1γµu2)

−u

]
. (59.57)

We then have

T = e2
[
(u1γ

νu′1)(u2γνu
′
2)

−t − (u1γ
νu′2)(u2γνu

′
1)

−s

]
. (59.58)

Thus
|T |2 = e4

[
Φtt/t

2 + (Φtu + Φut)/tu+ Φuu/u
2
]
, (59.59)

where

Φtt = Tr[(u1u1)γ
ν(u′1u

′
1)γ

µ] Tr[(u2u2)γν(u
′
2u

′
2)γµ] ,

Φuu = Tr[(u1u1)γ
ν(u′2u

′
2)γ

µ] Tr[(u′1u
′
1)γµ(u2u2)γν ] ,

Φtu = Tr[(u1u1)γ
ν(u′2u

′
2)γµ(u2u2)γν(u

′
1u

′
1)γ

µ] ,

Φut = Tr[(u1u1)γ
ν(u′1u

′
1)γµ(u2u2)γν(u

′
2u

′
2)γ

µ] . (59.60)

Averaging over initial spins and summing over final spins yields

〈Φtt〉 = 1
4Tr[(−/p1+m)γν(−/p ′1+m)γµ] Tr[(−/p2+m)γµ(−/p ′2+m)γν ] ,

〈Φuu〉 = 1
4Tr[(−/p1+m)γν(−/p ′2+m)γµ] Tr[(−/p ′1+m)γµ(−/p2+m)γν ] ,

〈Φtu〉 = 1
4Tr[(−/p1+m)γν(−/p ′2+m)γµ(−/p2+m)γν(−/p ′1+m)γµ] ,

〈Φut〉 = 1
4Tr[(−/p1+m)γν(−/p ′1+m)γµ(−/p2+m)γν(−/p ′2+m)γµ] . (59.61)

Comparing with eq. (59.48) for e+e− → e+e−, we see that eq. (59.61) is transformed into
eq. (59.61) via p2 ↔ −p′2. This is equivalent to s ↔ u, so we need not redo the calculation;
we have

〈Φtt〉 = 2(t2 + 2tu+ 2u2 − 8m2u+ 8m4) ,

〈Φuu〉 = 2(u2 + 2tu+ 2t2 − 8m2t+ 8m4) ,

〈Φtu〉 = −2(s2 − 8m2s+ 12m4) ,

〈Φut〉 = −2(s2 − 8m2s+ 12m4) . (59.62)
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60 Spinor Helicity for Spinor Electrodynamics

60.1) a) Using eqs. (60.7–8) and −/p = |p〉[p| + |p]〈p|, we have

pµε
µ
+(k) = − 〈q|/p|k]√

2 〈q k〉
=

〈q p〉 [p k]√
2 〈q k〉

, (60.43)

pµε
µ
−(k) = − [q|/p|k〉√

2 [q k]
=

[q p] 〈p k〉√
2 [q k]

. (60.44)

Setting p = q or p = k makes both expressions vanish, since 〈q q〉 = [q q] = 0.

b) We need 〈q|γµ|k] = [k|γµ|q〉 and the Fierz identity [p|γµ|q〉 〈r|γµ|s] = 2 [p s] 〈q r〉, both
proved in problem 50.5. Then using eqs. (60.7–8), we have

ε+(k;q)·ε+(k′;q′) =
[k|γµ|q〉 〈q′|γµ|k′]

2 〈q k〉 〈q′ k′〉 =
〈q q′〉 [k k′]
〈q k〉 〈q′ k′〉 , (60.45)

ε−(k;q)·ε−(k′;q′) =
[q|γµ|k〉 〈k′|γµ|q′]

2 [q k] [q′ k′]
=

[q q′] 〈k k′〉
[q k] [q′ k′]

, (60.46)

ε+(k;q)·ε−(k′;q′) =
[k|γµ|q〉 〈k′|γµ|q′]

2 〈q k〉 [q′ k′]
=

〈q k′〉 [k q′]
〈q k〉 [q′ k′]

. (60.47)

60.2) a) If pj is the four-momentum particle j (with the convention that all momenta are outgoing),
then

∑
j pj = 0, and so

∑
j /pj = −∑j(|j〉[j| + |j]〈j|) = 0. Sandwiching this between 〈i| and

|k] yields
∑
j〈i j〉 [j k] = 0.

b) Since 〈i i〉 = [i i] = 0, j = i and j = k do not contribute to the sum. For n = 4, this yields
〈2 1〉 [1 3] + 〈2 4〉 [4 3] = 0, or equivalently [3 1] 〈1 2〉 = − [3 4] 〈4 2〉.

60.3) Multiply the numerator and denominator of 〈2 4〉2/〈1 3〉〈2 3〉 by [2 4]2. In the numerator, use
〈2 4〉2 [2 4]2 = s224 = s213 = 〈1 3〉2 [1 3]2. In the denominator, use 〈2 3〉 [2 4] = −〈1 3〉 [1 4], which
follows from momentum conservation. The result is −[1 3]2/[1 4] [2 4].

60.4) We have

T+−+− = −2e2
〈2 4〉 [q4|(/p1 + /k3)|2〉 [3 1]

[q44] 〈2 3〉 s13
. (60.48)

Using −/p = |p〉[p| + |p]〈p| in the numerator, and s13 = 〈1 3〉 [3 1] in the denominator, we get

T+−+− = 2e2
〈2 4〉 ([q41] 〈1 2〉 + [q43] 〈3 2〉)

[q44] 〈2 3〉 〈1 3〉 . (60.49)

a) We take q4 = p1, and so

T+−+− = 2e2
〈2 4〉 [1 3] 〈3 2〉
[1 4] 〈2 3〉 〈1 3〉 . (60.50)

In the numerator, use [1 3] 〈3 2〉 = −[1 4] 〈4 2〉 = [1 4] 〈2 4〉 and cancel common factors to get
eq (60.31).
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b) We take q4 = p2, and so

T+−+− = 2e2
〈2 4〉 ([2 1] 〈1 2〉 + [2 3] 〈3 2〉)

[2 4] 〈2 3〉 〈1 3〉

= 2e2
〈2 4〉 (s12 + s23)

[2 4] 〈2 3〉 〈1 3〉

= 2e2
〈2 4〉 (−s24)

[2 4] 〈2 3〉 〈1 3〉

= 2e2
〈2 4〉 (〈2 4〉 [2 4])

[2 4] 〈2 3〉 〈1 3〉

= 2e2
〈2 4〉2

〈1 3〉〈2 3〉 . (60.51)



Mark Srednicki Quantum Field Theory: Problem Solutions 104

61 Scalar Electrodynamics

61.1) We have

T = −4e2εµ1′ε
ν
2′

[
kµ1 k

ν
2

m2 − t
+

kν1k
µ
2

m2 − u
+ 1

2g
µν

]
, (61.16)

and so

T = −4e2ε∗ρ1′ ε
∗σ
2′

[
kρ1k

σ
2

m2 − t
+

kσ1 k
ρ
2

m2 − u
+ 1

2g
µν

]
. (61.17)

After summing over final polarizations, we have

〈|T |2〉 = 16e4
[
kµ1 k

ν
2

m2 − t
+

kν1k
µ
2

m2 − u
+ 1

2g
µν

][
k1µk2ν

m2 − t
+
k1νk2µ

m2 − u
+ 1

2gµν

]

= 16e4
[

m4

(m2 − t)2
+

m4

(m2 − u)2
+ 1 +

2(k1k2)
2

(m2 − t)(m2 − u)
+

k1k2

m2 − t
+

k1k2

m2 − u

]
, (61.18)

where k1k2 = −1
2(s− 2m2) = 1

2(t+ u).

61.2) For ẽ−γ → ẽ−γ, the diagrams are

k1 k1+k2 k′1

k2 k′2

k1 k1−k′2 k′1

k2 k′2

k1 k′1

k2

k′2

and the amplitude is

T = e2ε∗µ2 εν2′

[
(2k1+k2)µ(k1+k

′
1+k2)ν

m2 − s
+

(k1−k′2+k′1)µ(2k1−k′2)ν
m2 − u

− 2gµν

]
. (61.19)

We use k1+k2 = k′1+k
′
2 to replace k1+k

′
1+k2 with 2k′1+k

′
2 and k1−k′2+k′1 with 2k′1−k2, and

then use k2 ·ε∗2 = k′2 ·ε2′ = 0 to get

T = e2ε∗µ2 εν2′

[
4k1µk

′
1ν

m2 − s
+

4k′1µk1ν

m2 − u
− 2gµν

]
. (61.20)

Squaring, averaging over the initial polarization, and summing over the final polarization
yields

〈|T |2〉 = 8e4
[
kµ1 k

′
1
ν

m2 − s
+

k′1
µkν1

m2 − u
− 1

2g
µν

][
k1µk

′
1ν

m2 − s
+
k′1µk1ν

m2 − u
− 1

2gµν

]

= 8e4
[

m4

(m2 − s)2
+

m4

(m2 − u)2
+ 1 +

2(k1k
′
1)

2

(m2 − s)(m2 − u)
− k1k

′
1

m2 − s
− k1k

′
1

m2 − u

]
, (61.21)

where k1k
′
1 = 1

2(t − 2m2) = −1
2(s + u). This is related by s ↔ t to eq. (61.18). There is an

extra factor of 2 in eq. (61.18) because both polarizations are summed in that case (instead
of one being averaged).
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62 Loop Corrections in Spinor Electrodynamics

62.1) In momentum space. the gauge-fixing term becomes −1
2ξ

−1kµkνÃµ(k)Ãν(−k). Adding this to
eq. (57.3) yields −1

2Ãµ(k)[k
2Pµν(k) + ξ−1kµkν ]Ãν(−k) as the kinetic term for the gauge field.

The propagator is the matrix inverse of the contents of the square brackets. Since Pµν(k) and
kµkν/k2 are orthogonal projection matrices, the propagator is (1/k2)[Pµν(k)+ ξkµkν/k2]. In
the limit ξ → 0, including this term in the lagrangian yields a path integrand that oscillates
infinitely rapidly whenever ∂µAµ 6= 0; thus the path integral vanishes unless ∂µAµ = 0, and
sothe ξ → 0 limit corresponds to Lorenz gauge.

62.2) Only the photon propagator is changed. Since the one-loop contribution to Πµν(k) does not
include a photon propagator, Z3 is unchanged at one loop. The extra term (ξ−1)kµkν/(k2)2

in the photon propagator would add an extra term to the electron self-energy of the form

i∆Σ(p) = (ξ−1)e2
∫

d4ℓ

(2π)4
/ℓ(−/p− /ℓ+m)/ℓ

((p+ℓ)2 +m2)(ℓ2)2
− i(∆Z2)/p− i(∆Zm)m , (62.51)

where ∆Z2 and ∆Zm are the extra contributions to Z2 and Zm that are needed to cancel
the extra contributions to the divergence. Combining denominators with Feynman’s formula
yields

1

((p+l)2 +m2)(l2)2
=

∫
dF3 [x1(p+ℓ)

2 + x1m
2 + x2ℓ

2 + x3ℓ
2]−3

=

∫
dF3 [ℓ2 + 2x1ℓ·p+ x1p

2 + x1m
2]−3

=

∫
dF3 [(ℓ+x1p)

2 + x1(1−x1)p
2 + x1m

2]−3

= 2

∫ 1

0
dx (1−x)[q2 +D]−3 , (62.52)

where q = ℓ + xp and D = x(1−x)p2 + xm2. We set ℓ = q − xp in the numerator, and
drop terms that are odd in q. Then only the q2 terms contribute to the divergence. These
terms are x(/q/q/p + /q/p/q + /p/q/q) + /q(−/p + m)/q, and making the replacement qµqν → 1

4q
2gµν

yields 1
4q

2[x(γµγµ/p+ γµ/pγµ + /pγµγµ) + γµ(−/p+m)γµ] = 1
4q

2[x(−4/p+ 2/p− 4/p)− 2/p− 4m] =
−1

4q
2[(6x+2)/p + 4m]. (We can set d = 4 because terms of order ε will not contribute to the

divergent part.) Then we use
∫

d4q

(2π)4
q2

(q2 +D)3
=

i

8π2ε
+ finite (62.53)

and 2
∫ 1
0 dx (1−x) = 1 and 2

∫ 1
0 dx (1−x)x = 1

3 to get

∆Σ(p) = −(ξ−1)
e2

8π2ε
(/p+m) − (∆Z2)/p− (∆Zm)m , (62.54)

Combining this with eqs. (62.34) and (62.35), we get

Z2 = 1 − ξ
e2

8π2

(
1

ε
+ finite

)
+O(e4) , (62.55)

Zm = 1 − (3+ξ)
e2

8π2

(
1

ε
+ finite

)
+O(e4) . (62.56)
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To compute the change in Z1, we can set external momenta to zero. Then we have

i∆V µ(0, 0) = ie∆Z1γ
µ + (ξ−1)e3

∫
d4ℓ

(2π)4
/ℓ(−/ℓ+m)γµ(−/ℓ+m)/ℓ

(ℓ2 +m2)2(ℓ2)2
. (62.57)

Only the ℓ4 term in the numerator gives a divergence, so we can replace the numerator with
/ℓ/ℓγµ/ℓ/ℓ = (ℓ2)2γµ. The divergent part of the integral is then i/8π2ε, and so the divergent part
of ∆Z1 is −(ξ−1)e2/8π2ε, leading to

Z1 = 1 − ξ
e2

8π2

(
1

ε
+ finite

)
+O(e4) . (62.58)

We see that Z1 = Z2 for all ξ, and that Z1 = Z2 = 1 +O(e4) for Lorenz gauge (ξ = 0). This
will prove very convenient later.

62.3) The diagrams consist of a closed fermion loop with four external photons. Starting with
photon #1 and following the fermion arrow backwards, there are six diagrams, corresponding
to the six permutations of 2, 3, 4. To get a divergent result, we must keep all the loop momenta
in the numerator. The divergent part of the diagram with 1234 ordering is then

iTdiv = e4
∫

d4ℓ

(2π)4
Tr /ε1/ℓ/ε2/ℓ/ε3/ℓ/ε4/ℓ

(ℓ2 +m2)4
(62.59)

Using symmetric integration, we have ℓµℓνℓρℓσ → 1
24 (ℓ2)2(gµνgρσ + gµρgνσ + gµσgνρ), and

so Tr /ε1/ℓ/ε2/ℓ/ε3/ℓ/ε4/ℓ → 1
24(ℓ2)2 Tr(/ε1γ

µ/ε2γµ/ε3γ
ρ/ε4γρ + /ε1γ

µ/ε2γ
ν/ε3γµ/ε4γν + /ε1γ

µ/ε2γ
ν/ε3γν/ε4γµ).

The first and last term in the parentheses each simplifies to 4/ε1/ε2/ε3/ε4, while the mid-
dle term becomes 2/ε1/ε3γ

ν/ε2/ε4γν = 8(ε2ε4)/ε1/ε3. Taking the trace then yields Tr(. . .) =
32[(ε1ε2)(ε3ε4) + (ε1ε4)(ε2ε3) − 2(ε1ε3)(ε2ε4)]. If we now sum over the six permutations of
234, the terms cancel in pairs, and the result is zero.

If the result were not zero, we would have to add a term to the lagrangian to absorb the
divergence. Since no external momenta are involved, such a term would have to take the
form AµAµA

νAν . However, this is not gauge invariant. Thus gauge invariance requires that
Tdiv vanish.
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63 The Vertex Function in Spinor Electrodynamics

63.1) a) If we have an incoming electron with momentum p and an outgoing electron with momen-
tum p′ that are attached to the same vertex, then we get a factor of u ′Vµu, where u = us(p)
and u ′ = us′(p

′). The photon momentum is q = p′ − p. Since qµqν terms in the photon
propagator ∆µν(q) should not contribute, and since the photon propagator attaches to the
vertex Vµ(p′, p), we should have qµu

′Vµu = 0. Using eq. (63.23), we get

0 = e(p′ − p)µu
′[Aγµ +B(p′ + p)µ + C(p′ − p)µ]u

= eu ′[A(/p ′ − /p) +B(p′2 − p2) + Cq2]u

= eCq2u ′u , (63.24)

where we used u ′/p ′ = −mu ′, /pu = −mu, and p′2 = p2 = −m2 to get the last line. We see
that we must have C(q2) = 0.

b) Using eq. (63.16), we can make the replacement Aγµ + B(p′ + p)µ → (A + 2mB)γµ +
2iBSµνqν . Comparing with eq. (63.18), we see that F1 = A+ 2mB and F2 = −2mB.
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64 The Magnetic Moment of the Electron

64.1) It is easiest to use a different gauge for the external field, A = 1
2B(−y, x, 0) rather than A =

B(0, x, 0). Then, in eq. (64.10), the iγ2∂1 term (where ∂1 ≡ ∂/∂p1) becomes 1
2 i(γ

2∂1 − γ1∂2).
Using uγiu = 2piuu and uu = 2m, this becomes − i

2m(p1∂2 − p2∂1), which we recognize
as 1

2mLz acting on functions of p. Comparing with the result in eq. (64.13), we see that
(1 +α/2π)Sz is replaced with 1

2Lz + (1 +α/2π)Sz . Then Lz is replaced by its eigenvalue mℓ,
and Sz by its eigenvalue ms = +1

2 .
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65 Loop Corrections in Scalar Electrodynamics

65.1) For vanishing photon four-momenta, and external scalars on shell (that is, k2 = k′2 = k ·p =
k ·p′ = k′ ·p = k′ ·p′ = 0, p2 = p′2 = −m2), we have V

µ
3 = −e(p+ p′) and V

µν
4 = −2e2gµν .

65.2) Define a covariant derivative Dµ ≡ ∂µ − iKeAµ, where K is an arbitrary constant. Our
results in section 58 imply that, under the transformation Aµ → Aµ−∂µΓ and ϕ→ e−iKeΓϕ,
we have Dµϕ→ e−iKeΓDµϕ. Then −(Dµϕ)†Dµϕ = −∂µϕ†∂µϕ+ iKe[ϕ†∂µϕ−ϕ†(∂µϕ)]Aµ−
K2e2ϕ†ϕAµAµ is invariant. If we multiply by Z2 and compare with eqs. (65.1–4), we see that
we must have Z1 = KZ2 and Z4 = K2Z2. Eliminating K yields Z4 = Z2

1/Z2.
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66 Beta Functions in Quantum Electrodynamics

66.1) We have

γΨ ≡ 1

2

d lnZ2

d lnµ

=
1

2

(
−1

2
e
∂

∂e

)
ε lnZ2

=
e2

16π2
, (66.33)

γA ≡ 1

2

d lnZ3

d lnµ

=
1

2

(
−1

2
e
∂

∂e

)
ε lnZ3

=
e2

12π2
, (66.34)

γm ≡ d

d lnµ
lnm

=
d

d lnµ

[
lnm0 − ln

(
Zm/Z2

)]

=

(
1

2
e
∂

∂e

)
ε ln

(
Zm/Z2

)

= − 3e2

8π2
. (66.35)

66.2) We have

γϕ ≡ 1

2

d lnZ2

d lnµ

=
1

2

(
−1

2
e
∂

∂e
− λ

∂

∂λ

)
ε lnZ2

= − 3e2

16π2
, (66.36)

γA ≡ 1

2

d lnZ3

d lnµ

=
1

2

(
−1

2
e
∂

∂e
− λ

∂

∂λ

)
ε lnZ3

=
e2

48π2
, (66.37)
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γm ≡ d

d lnµ
lnm

=
d

d lnµ

[
lnm0 − ln

(
Z1/2
m /Z

1/2
2

)]

=

(
1

2
e
∂

∂e
+ λ

∂

∂λ

)
ε ln

(
Z1/2
m /Z

1/2
2

)

=
1

16π2
(λ− 3e2) . (66.38)

66.3) We have Z3 = 1 − e2/(6π2ǫ), Z1 = Z2 = 1 − ξe2/(8π2ǫ), and Zm = 1 − (3+ξ)e2/(8π2ǫ). We
see that Z3 is independent of ξ (to this order), and also that dependence on ξ cancels in the

ratios Z1/Z2 and Zm/Z2. Since the beta function is computed from Z1/(Z2Z
1/2
3 ) and the

anomalous dimension of m from Zm/Z2, these are independent of ξ. The results are therefore
the same as in problem 66.1.

66.4) 1/α(MW) = 137.036 − (2/3π)(40.07) = 128.5. The measured value of 1/α(MZ) is 127.9.
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67 Ward Identities in Quantum Electrodynamics I

67.1) Making the replacement ε1′ → k′1, the amplitude becomes

T = −e2
[
4(k1 ·k1′)(k2 ·ε2′)

m2 − t
+

4(k1 ·ε2′)(k2 ·k1′)

m2 − u
+ 2(k1′ ·ε2′)

]
. (67.13)

Now we use k1 ·k1′ = 1
2(t −m2) and k2 ·k1′ = 1

2(u −m2) to get T = 2e2(k2 + k1 − k′1)·ε2′ =
2e2 k′2 ·ε2′ = 0.

67.2) Making the replacement ε1′ → k′1, and using −p1 + k′2 = p2 − k′1 in the numerator of the
second term, the amplitude becomes

T = e2 v2

[
/ε2′

(−/p1 + /k′1 +m

m2 − t

)
/k′1 + /k′1

(
/p2 − /k′1 +m

m2 − u

)
/ε2′

]
u1 . (67.14)

We use /k′1/k
′
1 = −k′12 = 0 to remove the /k′1 term in each numerator. Then we use (−/p1+m)/k′1 =

/k′1(/p1+m)+2p1·k′1 in the first term and /k′1(/p2+m) = (−/p2+m)/k′1−2p2·k′1 in the second term,
followed by (/p1+m)u1 = 0 in the first term and v2(−/p2+m) = 0 in the second term. Then
using 2p1 ·k′1 = t−m2 and 2p2 ·k′1 = u−m2, we see that the two terms cancel.
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68 Ward Identities in Quantum Electrodynamics II

68.1) a) Consider the photon propagator, which (in momentum space) can be expressed as ∆̃µν(k) =
∆µν(k)+ ∆̃µρ(k)Πρσ(k)∆̃

σν(k)+ . . . . All terms except the first consist of Feynman diagrams
with two external photons, each attached to a vertex. If drop the first term and remove the
external photons from the remaining terms, we get the sum of all diagrams with two vertices
that have no attached photons; each of these two vertices corresponds (in position space) to
a factor of Z1j

µ(x). We conclude that Πµν(k) + Πµρ(k)∆̃ρσ(k)Π
σν(k) + . . . is proportional

to the Fourier transform of 〈0|Tjµ(x)jν(y)|0〉.
b) We have ∂µ〈0|Tjµ(x)jν(y)|0〉 = 0 by the Ward identity. In momentum space, this becomes
kµΠ

µρ(k)[δρ
ν +∆̃ρσ(k)Π

σν(k)+ . . .] = 0. The matrix in square brackets is nonzero in general,
and so the entire expression can vanish only if kµΠ

µρ(k) = 0.

68.2) a) From eq. (62.28), we have

Σ1 loop(/p) = −ie2
∫

d4ℓ

(2π)4
γρS̃(/p + /ℓ)γν∆̃νρ(ℓ) . (68.18)

From eq (62.40), we have

V
µ
1 loop(p′, p) = −ie3

∫
d4ℓ

(2π)4
γρS̃(/p ′+/ℓ)γµS̃(/p+/ℓ)γν∆̃νρ(ℓ) . (68.19)

Contract this with (p′−p)µ, and use /p ′− /p = (/p ′+/ℓ+m)− (/p+/ℓ+m) = S̃(/p ′+/ℓ)−1− S̃(/p+/ℓ)−1

to get

(p′−p)µVµ
1 loop(p

′, p) = −ie3
∫

d4ℓ

(2π)4
γρ[S̃(/p+/ℓ) − S̃(/p ′+/ℓ)]γν∆̃νρ(ℓ)

= eΣ1 loop(/p) − eΣ1 loop(/p ′) . (68.20)

We have V µ(p′, p) = Z1eγ
µ +V

µ
1 loop(p

′, p) and S̃(/p)−1 = Z2/p+Zmm−Σ1 loop(/p ′). Assuming
Z1 = Z2, we have (p′−p)µ(Z1eγ

µ) = e[(Z2 /p ′ + Zmm) − (Z2/p+ Zmm)]. Combining this with
eq. (68.20) yields (p′−p)µVµ(p′, p) = e[S̃(/p ′)−1 − S̃(/p)−1] up through one-loop in any scheme
where Z1 = Z2.

68.3) An insertion of −iZ1e[ϕ
†∂µϕ − (∂µϕ†)ϕ] produces a photon-scalar-scalar vertex, without

the photon. An insertion of −2iZ4e
2Aµϕ†ϕ produces a photon-photon-scalar-scalar vertex,

without one of the photons. The sum of these equals Z−1
2 Z1J

µ, where Jµ is the Noether
current. (We need to use Z4 = Z2

1/Z2 to get this result.) Thus, the correlation function

Cµ3 (k, p′, p) ≡ iZ−1
2 Z1

∫
d4x d4y d4z eikx−ip

′y+ipz 〈0|TJµ(x)ϕ(y)ϕ†(z)|0〉 , (68.21)

can be expressed in terms of the exact scalar propagator ∆̃(p) and the exact photon–scalar–
scalar vertex function V

µ
3 (p′, p) as

Cµ3 (k, p′, p) = (2π)4δ4(k+p−p′)
[

1
i ∆̃(p′)iVµ

3 (p′, p)1
i ∆̃(p)

]
. (68.22)
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There are contributions to V3 from diagrams where an internal photon attaches to the same
vertex as the external photon; these are generated by the second term in the Noether current.
We now use the Ward identity, eq. (68.4), along with δϕ = −ieϕ and δϕ† = +ieϕ†, to get

−∂µ〈0|TJµ(x)ϕ(y)ϕ†(z)|0〉 = +eδ4(x−y)〈0|Tϕ(y)ϕ†(z)|0〉 − eδ4(x−z)〈0|Tϕ(y)ϕ†(z)|0〉 .
(68.23)

From here the analysis is essentially identical to that of spinor electrodynamics, and we get

(p′−p)µVµ
3 (p′, p) = Z−1

2 Z1e
[
∆̃(p′)−1 − ∆̃(p)−1

]
. (68.24)

b) Since both V3 and ∆̃ are finite, Z1/Z2 must be finite as well. Since all corrections to
Zi = 1 are infinite in the MS scheme, eq. (68.24) is consistent only if Z1 = Z2. In the OS
scheme, we use the fact that near p2 = p′2 = −m2 and (p′−p)2 = 0, ∆̃(p)−1 ∼ p2 +m2 and
V
µ
3 (p′, p) ∼ −e(p′+p)µ to see that we must have Z1 = Z2.

c) We define

Cµν4 (k, k′, p′, p) ≡ i2Z−2
2 Z2

1

∫
d4x d4y d4z d4w eikx+ik

′w−ip′y+ipz〈0|TJµ(x)Jν(w)ϕ(y)ϕ†(z)|0〉 .
(68.25)

This gets contributions from the exact three- and four-point vertices:

p p+k p′

k k′

p p+k′ p′

k′ k

p p′

k k′

We have

Cµν4 (k, k′, p′, p) = (2π)4δ4(p+k+k′−p′)1
i ∆̃(p′)

×
[
iVν

3(p′, p+k)1
i ∆̃(p+k)iVµ

3 (p+k, p)

+ iVµ
3 (p′, p+k′)1

i ∆̃(p+k′)iVν
3 (p+k′, p)

+ iVµν
4 (k, k′, p′, p)

]
1
i ∆̃(p) . (68.26)

Multiplying by kµ, and following the steps that lead to eq. (68.3), we get

kµC
µν(k, k′, p′, p) = −iZ−2

2 Z2
1

∫
d4x d4y d4z d4w eikx−ip

′y+ipz−ik′w

× ∂µ〈0|TJµ(x)Jν(w)ϕ(y)ϕ†(z)|0〉 . (68.27)

The relevant Ward idenitity is

−∂µ〈0|TJµ(x)Jν(w)ϕ(y)ϕ†(z)|0〉 = +eδ4(x−y)〈0|TJν(w)ϕ(y)ϕ†(z)|0〉
−eδ4(x−z)〈0|TJν(w)ϕ(y)ϕ†(z)|0〉 . (68.28)

There is no δ4(x−w) term because Jν(w) is invariant under the U(1) symmetry. Plugging
eq. (68.28) into eq. (68.27) and using eq. (68.21), we get

kµC
µν
4 (k, k′, p′, p) = Z−1

2 Z1e
[
Cν3 (k′, p′−k, p) − Cν3 (k′, p′, p+k)

]
. (68.29)
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Now we evaluate the left-hand side of eq. (68.29), using eq. (68.26) and then simplifying with
eq. (68.24). We also use eq. (68.22) on the right-hand side of eq. (68.29). Then, after some
rearranging and use of p+k = p′−k′, we find

kµV
µν
4 (k, k′, p′, p) = Z−1

2 Z1e
[
V
µ
3 (p+k′, p) − V

µ
3 (p′, p′−k′)

]
. (68.30)

Since Z−1
2 Z1 = Z−1

1 Z4, this is the same as eq. (68.17).
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69 Nonabelian Gauge Theory

69.1) For Aµ = AbµT
b
R

and U = I − igθaT a
R
, eq. (69.9) becomes

AbµT
b
R
→ AbµT

b
R
− igθaAbµ[T

a
R
, T b

R
] − ∂µθ

aT a
R

= AbµT
b
R

+ gθaAbµf
abeT e

R
− ∂µθ

aT a
R
, (69.26)

or equivalently
AeµT

e
R
→ (Aeµ + gθaAbµf

abe − ∂µθ
e)T e

R
. (69.27)

We mutiply by T d
R
, take the trace, and use TrT d

R
T e

R
= Cde, where Cde is a positive-definite,

real symmetric (and hence invertible) matrix. Then we matrix-multiply by (C−1)cd to get

Acµ → Acµ + gθaAbµf
abc − ∂µθ

c , (69.28)

which is independent of the representation. (We can always choose the generators so that
Cde ∝ δde, which makes the final step superfluous.)

69.2) [T aT a, T b] = [T a, T b]T a + T a[T a, T b] = ifabc(T cT a + T aT c). Since fabc is antisymmetric on
a↔ c, while T cT a + T aT c is symmetric, the result is zero.
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70 Group Representations

70.1) Contracting (T a
R
T b

R
)ii = T (R)δab with δab yields (T a

R
T a

R
)ii = T (R)δaa = T (R)D(A). Contract-

ing (T a
R
T a

R
)ij = C(R)δij with δij yields (T a

R
T a

R
)ii = C(R)δii = C(R)D(R).

70.2) a) T (N ⊗ N) = T (A) +T (1) = T (A) + 0 = T (A), and T (N ⊗ N) = T (N)D(N) +D(N)T (N) =
1
2N +N 1

2 = N .

b) For SU(2), T (3)δab = (T a3 )cd(T b3 )dc = (−i)2εacdεbdc = εacdεbcd. This vanishes if a 6= b,
since then there is no way to get both epsilons to be nonzero; if a = b = 1 (say), then
ε1cdε1cd = ε123ε123 + ε132ε132 = 1 + 1 = 2. So T (A) = 2.

c) N ⊗ N = (2 ⊕ (N−2)1’s) ⊗ (2 ⊕ (N−2)1’s) = (2 ⊗ 2) ⊕ (2N−4)2’s ⊕ (N−2)21’s. Using
2 ⊗ 2 = 3 ⊕ 1 and N ⊗ N = A ⊕ 1, we have A = 3 ⊕ (2N−4)2’s ⊕ (N−2)21’s.

d) T (A) = T (3) + (2N−4)T (2) + (N−1)2T (1) = 2 + (2N−4)1
2 + 0 = N .

70.3) a) A = [N ⊗ N]A = [(3⊕(N−3)1’s)⊗(3⊕(N−3)1’s)]A = [3⊗3]A⊕(N−3)3’s = 3⊕(N−3)3’s =
(N−2)3’s.

b) T (A) = (N−2)T (3) = (N−2)2 = 2N−4.

70.4) a) D(A) = 1
2N(N−1) and D(S) = 1

2N(N+1).

b) A = [N ⊗ N]A = [(2⊕ (N−2)1’s)⊗ (2⊕ (N−2)1’s]A = [2⊗ 2]A ⊕ (N−2)2’s = 1⊕ (N−2)2’s.
Therefore T (A) = T (1)+(N−2)T (2) = 0+(N−2)1

2 = 1
2(N−2). Similarly, S⊕1 = [N ⊗ N]S =

[(2 ⊕ (N−2)1’s) ⊗ (2 ⊕ (N−2)1’s)]S = [2 ⊗ 2]S ⊕ (N−2)2’s ⊕ (N−2)21’s = 3 ⊕ (N−2)2’s ⊕
(N−2)21’s. Therefore T (S) = T (3) + (N−2)T (2) = 2 + (N−2)1

2 = 1
2(N+2).

c) ϕij = εijkϕ
k.

d) A = [N ⊗ N]A = [(3⊕ (N−3)1’s)⊗ (3⊕ (N−3)1’s]A = [3⊗ 3]A ⊕ (N−3)3’s = 3⊕ (N−3)3’s.
Therefore A(A) = A(3)+ (N−3)A(3) = −1+ (N−3)(+1) = N−4. Similarly, S = [N ⊗ N]S =
[(3 ⊕ (N−3)1’s) ⊗ (3 ⊕ (N−3)1’s]S = [3 ⊗ 3]S ⊕ (N−3)3’s ⊕ (N−3)21’s = 6 ⊕ (N−3)3’s ⊕
(N−3)21’s. Therefore A(S) = A(6) + (N−3)A(3) + (N−3)2A(1) = A(6) + (N−3)(+1) + 0 =
A(6)+N−3. To compute A(6) for SU(3), we note that A(3⊗3) = D(3)A(3)+A(3)D(3) = 6,
and that A(3 ⊗ 3) = A(6 ⊕ 3) = A(6) +A(3) = A(6) − 1, so A(6) = 7. Therefore for SU(N),
A(S) = N+4.

70.5) a) [Dµ(ϕχ)]iI = ∂µ(ϕiχI)−igAaµ(T aR1⊗R2
)iI,jJϕjχJ , and (T a

R1⊗R2
)iI,jJ = (TR1

)ijδIJ+δij(TR2
)IJ ,

so (T a
R1⊗R2

)iI,jJϕjχJ = (T a
R1
ϕ)iχI + ϕi(T

a
R2
χ)J . Combining this with ∂µ(ϕiχI) = (∂µϕi)χI +

ϕi∂µχI , we get [Dµ(ϕχ)]iI = (Dµϕ)iχI + ϕi(Dµχ)I .

b) We begin with (Dµϕ)i = ∂µϕi − igAaµ(T
a
R
)i
jϕj and (Dµϕ

†)i = ∂µϕ
†i − igAaµ(T

a
R
)ikϕ

†k =

∂µϕ
†i+igAaµ(T

a
R
)k
iϕ†k, so ϕ†i(Dµϕ)i = ϕ†i∂µϕi−igAaµϕ†i(T a

R
)i
jϕj and (Dµϕ

†)iϕi = (∂µϕ
†)i+

igAaµ(T
a
R
)k
iϕ†kϕi. Adding, the gauge-field terms cancel, and we get ϕ†i(Dµϕ)i+(Dµϕ

†)iϕi =

ϕ†i(∂µϕ)i + (∂µϕ
†)iϕi = ∂µ(ϕ

†iϕi). Since ϕ†iϕi is a singlet, ∂µ(ϕ
†iϕi) = Dµ(ϕ

†iϕi), so this is
a special case of part (a).

70.6) Using (T c
A
)ab = −if cab, we have (DρFµν)

a = ∂ρF
a
µν − gf cabAcρF

b
µν = ∂ρF

a
µν + gfabcAbρF

c
µν .

Plugging in F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , we get

(DρFµν)
a = ∂ρ(∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν) + gfabcAbρ(∂µA

c
ν − ∂νA

c
µ + gf cdeAdµA

e
ν)
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= ∂ρ∂µA
a
ν − ∂ρ∂νA

a
µ

+ gfabc(∂ρA
b
µA

c
ν +Abµ∂ρA

c
ν +Abρ∂µA

c
ν −Abρ∂νA

c
µ)

+ g2fabcf cdeAbρA
d
µA

e
ν . (70.42)

We manipulate the first term on the second line via ∂ρA
b
µA

c
ν = Acν∂ρA

b
µ and fabcAcν∂ρA

b
µ =

−fabcAbν∂ρAcµ. Then we have

(DρFµν)
a = ∂ρ∂µA

a
ν − ∂ν∂ρA

a
µ

+ gfabc(−Abν∂ρAcµ +Abµ∂ρA
c
ν +Abρ∂µA

c
ν −Abρ∂νA

c
µ)

+ g2fabcf cdeAbρA
d
µA

e
ν . (70.43)

If we use eq. (70.43) in DµFνρ +DνFρµ +DρFµν , the terms from the first line of eq. (70.43)
will cancel in pairs, as will the terms from the second line. Then the third line yields

(DµFνρ +DνFρµ +DρFµν)
a = g2fabcf cde(AbµA

d
νA

e
ρ +AbνA

d
ρA

e
µ +AbρA

d
µA

e
ν)

= g2fabcf cde(AbµA
d
νA

e
ρ +AeµA

b
νA

d
ρ +AdµA

e
νA

b
ρ)

= g2(fabcf cde + fadcf ceb + faecf cbd)AbµA
d
νA

e
ρ , (70.44)

and the contents of the parentheses in the last line vanish by the Jacobi identity.

More elegant method: given a field ϕa in the adjoint representation, we can make a matrix-
valued field ϕ ≡ ϕaT a, analogous to the matrix-valued gauge field Aµ = AaµT

a. Then the
covariant derivative of ϕ, in matrix form, is (Dρϕ)aT a = ∂ρϕ − ig[Aρ, ϕ]. We can write
∂ρϕ as a commutator [∂ρ, ϕ]; then we have (Dρϕ)aT a = [Dρ, ϕ], where Dρ = ∂ρ − igAρ.
Since Fµν is a field in the adjoint representation, we have (DρFµν)

aT a = [Dρ, Fµν ]. We
also have Fµν = (i/g)[Dµ,Dν ], so (DρFµν)

aT a = (i/g)[Dρ, [Dµ,Dν ]]. Adding the two cyclic
permutations, the terms cancel in pairs when the commutators are written out. We see that
the Bianchi identity is essentially the Jacobi identity applied to covariant derivatives.
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71 The Path Integral for Nonabelian Gauge Theory
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72 The Feynman Rules for Nonabelian Gauge Theory

72.1) This is a simple generalization of the vertices in scalar electrodynamics:

k k′
j i

a µ

j i

a b
µ ν

k i

l j

ig(T a)ij(k + k′)µ −ig2(T aT b + T bT a)ijg
µν −i12λ(δilδjk + δikδjl)
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73 The Beta Function in Nonabelian Gauge Theory

73.1) We need Z1, Z2, and Z3. The computation of Z2 and Z3 are the same as in scalar electro-
dynamics, with extra group-theory factors. The extra group-theory factors are the same as
they are for spinors. Thus we have e2 → g2C(R) in Z2 and e2 → g2T (R) in Z3. For Z1,
the two diagrams of fig. 73.2 contribute (with, obviously, the fermion line replaced by a scalar
line). The first again gives the same result as scalar electrodynamics with e2 → g2C(R). The
second has a group theory factor that is proportional to T (A). Thus it does not contribute
to the dependence on the representation R of the scalar. The case of no scalars must give
the same result as the case of no fermions (equivalent to R = 1), so we need not keep track
of this diagram. The dependence on C(R) then cancels in ratio Z1/Z2, and the g2 term in
Z3 is smaller by a factor of four than it is for a fermion. Thus the contribution to the beta
function is also smaller by the same factor, and so we have

β(g) = −
[

11
3 T (A) − 1

3T (R)
] g3

16π2
+O(g5) . (73.42)

73.2) R-dependent contributions to Z3 are additive, and R-dependent contributions to Z1 and Z2

cancel in the ratio. Thus we have

β(g) = −
[

11
3 T (A) − 4

3

∑
iT (Ri) − 1

3

∑
iT (R′

i)
] g3

16π2
+O(g5) . (73.43)

73.3) Comparing with spinor electrodynamics, we have e2 → nFT (R)g2 in Z3, and e2 → C(R)g2

in Z2 and Zm. Therefore we can use our results from problem 66.1 with the replacements
e2 → nFT (R)g2 in γA and e2 → C(R)g2 in γΨ and γm, so that

γΨ =
C(R)

16π2
g2 , γA =

nFT (R)

12π2
g2 , γm = −3C(R)

8π2
g2 . (73.44)
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74 BRST Symmetry

74.1) We have −i ∫ d3x eikx
↔
∂0A

µ(x) =
∑
λ ε

µ
λ(k)a†λ(k). Contracting with ε∗+µ(k) then yields a†+(k),

since inspection of eq. (74.37) shows that ε∗+µ(k)εµλ(k) = δ+λ. On the other hand, contracting

with ckµ yields −c
√

2ωa†<(k). According to eq. (74.40),
√

2ωa†<(k) = ξ{QB, b
†(k)}, and so

|χ〉 = −cξb†(k)|ψ〉.
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75 Chiral Gauge Theories and Anomalies

75.1) We must demand that 1
2Tr{T a, T b}T c = 0, where T a is a either a generator of the nonabelian

group in the representation R1 ⊕ . . . ⊕ Rn, or the generator Q of the abelian group. The
nonabelian generators are block diagonal, with blocks given by T aRi

, and Q is diagonal with
d(R1) entries Q1, d(R2) entries Q2, etc. If all three generators are nonabelian, we have
1
2Tr{T a, T b}T c =

∑
iA(Ri)d

abc, and so we must have
∑
iA(Ri) = 0. If one generator (say

T c) is the abelian generator Q, we have 1
2Tr{T a, T b}Q =

∑
i T (Ri)Qiδ

ab, and so we must
have

∑
i T (Ri)Qi = 0. If two generators (say T a and T b) are abelian, we have TrQ2T c =∑

iQ
2
i TrT cRi

= 0, since nonabelian generators are always traceless. If all three generators are
abelian, we have

∑
i d(Ri)Q

3
i , and this must also vanish.
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76 Anomalies in Global Symmetries

76.1) We have Aµ(x) =
∑
λ

∫
d̃k [ε∗µλ (k)aλ(k)eikx + εµλ(k)a†λ(k)e−ikx] in free field theory. Using

〈p,q| = 〈0|aλ(p)aλ′(q) then yields 〈p,q|Aν(x)Aσ(y)|0〉 = ενε
′
σe

−ipx−iqy + ε′νεσe
−iqx−ipy. Since

Fµν(x) = ∂µAν(x) − ∂νAµ(x), we have

〈p,q|Fµν(x)Fρσ(y)|0〉 = (−i)2(pµεν−pνεµ)(qρε′σ−qσε′ρ)e−ipx−iqy

+ (−i)2(qµε′ν−qνε′µ)(pρεσ−pσερ)e−iqx−ipy . (76.30)

Contracting with εµνρσ yields

εµνρσ〈p,q|Fµν(x)Fρσ(y)|0〉 = −4εµνρσ(pµενqρε
′
σe

−ipx−iqy + qµε
′
νpρεσe

−iqx−ipy) . (76.31)

Setting x = y = z yields

εµνρσ〈p,q|Fµν(z)Fρσ(z)|0〉 = −8εµνρσpµενqρε
′
σe

−i(p+q)z

= −8εµνρσενε
′
σpµqρe

−i(p+q)z

= +8εµνρσεµε
′
νpρqσe

−i(p+q)z (76.32)

Multiplying both sides of eq. (76.32) with −g2/16π2 and using eq. (76.14) yields eq. (76.29).
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77 Anomalies and the Path Integral for Fermions

77.1) We begin by noting, for later use, that

Tr(T aT bT c) = 1
2 Tr(T a[T b, T c]) + 1

2 Tr(T a{T b, T c})
= 1

2 iT (R)fabc +A(R)dabc . (77.37)

We have omitted the subscript R on the generators for notational convenience.

We will now show that each term on the right-hand side of eq. (77.35) is proportional to A(R).

We note that εµνρσ∂µ(Aν∂ρAσ) = εµνρσ∂µAν∂ρAσ, since the term where ∂µ and ∂ρ both act
on Aσ vanishes when contracted with εµνρσ . Now we have εµνρσ∂µA

b
ν∂ρA

c
σ Tr(T aT bT c). Since

εµνρσ is symmetric on exchange of µν ↔ ρσ, εµνρσ∂µA
b
ν∂ρA

c
σ is symmetric on exchange of

b↔ c. Thus only the symmetric dabc term in eq. (77.37) survives, and this is proportional to
A(R).

Now consider εµνρσAbνA
c
ρA

d
σ Tr(T aT bT cT d). We note that εµνρσAbνA

c
ρA

d
σ is antisymmetric on

c ↔ d. Thus we can replace T cT d with its antisymmetric part, 1
2 [T c, T d] = 1

2 if
cdeT e. Then

we have Tr(T aT b[T c, T d]) = −1
2T (R)f cdefabe + iA(R)f cdedabe. This must then be contracted

with εµνρσAbνA
c
ρA

d
σ, which is completely antisymmetric on bcd. We can make f cdefabe and

f cdedabe completely antisymmetric on bcd by adding the two cyclic permutations of bcd (and
dividing by 3). For the ff term, we get 1

3(f cdefabe + fdbeface+ f bcefade), and this vanishes by
the Jacobi identity. There is no comparable identity for the fd term, so this does not vanish,
and is proportional to A(R).

77.2) We note that εµνρσ∂µ(Aν∂ρAσ) = εµνρσ∂µAν∂ρAσ = 1
4ε
µνρσF 0

µνF
0
ρσ, where we have defined

F 0
µν ≡ ∂µAν − ∂νAµ.

Next we note that εµνρσ∂µTr(AνAρAσ) = 3εµνρσ Tr[(∂µAν)AρAσ] = 3
4ε
µνρσ Tr(F 0

µν [Aρ, Aσ]).

Next we note that Tr([Aµ, Aν ][Aρ, Aσ]) = AaµA
b
νA

c
ρA

d
σ Tr([T a, T b][T c, T d]). Then we have

Tr([T a, T b][T c, T d]) = −fabef cdg Tr(T eT g) = −T (R)fabef cde. If we contract with εµνρσ , we
have a factor of εµνρσAaµA

b
νA

c
ρA

d
σ, which is completely antisymmetric on abc. (Actually, on

abcd, but abc will be enough for our purposes.) We can make fabef cde completely antisymmet-
ric on abc by adding the two cyclic permutations of abc (and dividing by 3). As in the previous
problem, the result vanishes by the Jacobi identity. Thus, εµνρσ Tr([Aµ, Aν ][Aρ, Aσ ]) = 0.

Putting all this together, and using Fµν = F 0
µν − ig[Aµ, Aν ], we have

1
4ε
µνρσ Tr(FµνFρσ) = 1

4ε
µνρσ Tr((F 0

µν−ig[Aµ, Aν ])(F 0
ρσ−ig[Aρ, Aσ ]))

= 1
4ε
µνρσ Tr(F 0

µνF
0
ρσ − 2igF 0

µν [Aρ, Aσ ])

= εµνρσ Tr(∂µAν∂ρAσ − 2
3 ig∂µ(AνAρAσ))

= εµνρσ∂µTr(Aν∂ρAσ − 2
3 igAνAρAσ) . (77.38)
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78 Background Field Gauge

78.1) The relevant vertices are

q r

b ν c ρ

p

a µ

b ν c ρ

a ν d σ c r q b

a µ

d c

a µ b ν

For completeness we write down the corresponding vertex factors when all fields are internal,
as given in section 72:

iVabc
µνρ(p, q, r) = gfabc[(q − r)µgνρ + (r − p)νgρµ + (p− q)ρgµν ] , (78.43)

iVabcd
µνρσ = −ig2 [ fabef cde(gµρgνσ − gµσgνρ)

+ facefdbe(gµσgρν − gµνgρσ)

+ fadef bce(gµνgσρ − gµρgσν) ] , (78.44)

iVabc
µ (q, r) = gfabcqµ , (78.45)

iVabcd
µν = 0 . (78.46)

In the three-gluon vertex, at most one gluon may be external. We then have

iVābc
µ̄νρ(p̄, q, r) = gf ābc[(q − r)µ̄gνρ + (r − p̄+ q/ξ)νgρµ̄ + (p̄ − q − r/ξ)ρgµ̄ν ] , (78.47)

where we have put bars over the labels of the external line (p̄, µ̄, ā) to identify it. Also, we
have left the gauge-fixing parameter ξ arbitrary.

In the four-gluon vertex, at most two gluons may be external. If just one is external, the
vertex is unchanged. If two are external, we have

iVāb̄cd
µ̄ν̄ρσ = −ig2 [ f āb̄ef cde(gµ̄ρgν̄σ − gµ̄σgν̄ρ)

+ f ācefdb̄e(gµ̄σgρν̄ − gµ̄ν̄gρσ − gµ̄ρgν̄σ/ξ)

+ f ādef b̄ce(gµ̄νgσρ − gµ̄ρgσν + gµ̄σgν̄ρ/ξ) ] . (78.48)

In the gluon-ghost-ghost vertex, if the gluon is external we have

iVābc
µ̄ (q, r) = gf ābc(q + r)µ̄ . (78.49)

In the gluon-gluon-ghost-ghost vertex, one or both gluons may be external. If just one is
external, we have

iVābcd
µ̄ν = −ig2f ācef bdegµ̄ν . (78.50)

If both are external, we have

iVāb̄cd
µ̄ν̄ = −ig2(f ācef b̄de + f b̄cef āde)gµ̄ν̄ . (78.51)

See L. F. Abbott, Nucl. Phys. B185, 189 (1981) for more details (and a two-loop calculation
of the beta function).
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78.2) The general analysis of section 53 shows that if we integrate out a field φ with a lagrangian
of the form φ φ, we get (det )ν , where ν is negative for a bosonic field and positive for a
fermionic field, with magntiude |ν| = 1

2 for a real field and |ν| = 1 for a complex field (or a
pair of real fields). We can then compute (det )ν by summing all diagrams with a single
φ loop. (If the lagrangian for φ includes cubic or higher terms, these generate vertices that
enter only at higher-loop order.) Thus to verify eq. (78.42) at the one-loop level, we need only
show that the quadratic terms for the fields we integrate out (namely A, c, c̄, and Ψ) have
the form φ φ with the appropriate .

For the ghost fields, we see from eq. (78.27) that the quadratic term can be written as
c̄b(D̄2)bccc, with D̄µ in the adjoint representation. From eqs. (78.38) and (78.39), we see
that D̄2 = A,(1,1).

For the quantum gauge field, we use fabc = i(T a
A
)bc to write the last term in eq. (78.27)

(omitting the Z3) as −igAbα[(T a
A
)bcF̄ aαβ ]Acβ = 1

2gAbα[(T a
A
)bcF̄ aµν(S

µν
(2,2))αβ ]Acβ. The complete

quadratic term for A is then 1
2Abα[(D̄2)bcgαβ + g(T a

A
)bcF̄ aµν(S

µν
(2,2))αβ]Acβ. From eqs. (78.38)

and (78.39), we see that the operator in square brackets is A,(2,2).

For a massless Dirac fermion, the lagrangian is Ψ(i /̄D)Ψ, and so integrating it out yields
det(i /̄D) = [det(i /̄D)2]1/2. From eq. (77.27) with k = 0, we have (i /̄D)2 = D̄2 + gSµνF̄µν ,
where Sµν = i

4 [γµ, γν ] and F̄µν = T a
R
F̄ aµν . From eqs. (78.38) and (78.39), we see that (i /D)2 =

RDF,(2,1)⊕(1,2).

For more details, see Peskin & Schroeder or Weinberg II.
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79 Gervais–Neveu Gauge
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80 The Feynman Rules for N × N Matrix Fields

80.1) For N = 1, every T a = 1, and so in terms of component fields (actually of course just the
one field), the cubic vertex factor is 2ig and the quartic vertex factor is −6iλ. Diagrams
contributing to ϕϕ → ϕϕ scattering are those of fig. 10.2, plus a four-point vertex; thus the
amplitude is

T =
(2g)2

(k1+k2)2
+

(2g)2

(k1+k3)2
+

(2g)2

(k1+k4)2
− 6λ . (80.20)

In terms of the color-ordered rules, every trace equals one, and so summing over the six color
orderings yields 2A2 + 2A3 + 2A4, where Ai is given by eqs. (80.13–15). This reproduces
eq. (80.20).

80.2) The square of any trace is given by the left side of fig. 80.4, but with the right half labeled
1234 (from top to bottom). The product obviously contains four closed loops, and hence
equals N4. For the product of two different orderings (with the left half ordered as 1234 by
convention), we can always use the cyclic property of the trace to put the label 1 at the top of
the right half. Then any of the five possible ordering of 234 (that are not equal to 234) differ
either by exchange of a single pair (324, 243, 432) or by a cyclic permutation (342, 423). In
either case it is easy to see that the product contains two closed loops, and hence equals N2.

80.3) The second term in fig. 80.5 can appear on n = 0, 1, 2, 3, or all 4 of the bridges connecting the
left half of the left side of fig. 80.4 with its mirror image; call each such appearance a “broken
bridge”. The number of ways to choose the n broken bridges is C4,n = 4!/(4−n)!n!. The
number of closed loops when there are n broken bridges is Bn, where Bn = 4−n for n 6= 4,
and B4 = 2. Each broken bridge contributes a factor of −1/N . Thus, we have

∑

a1,a2,a3,a4

|Tr(T a1T a2T a3T a4)|2 =
4∑

n=0

C4,nN
Bn(−1/N)n

= N4 − 4N2 + 6 − 3N−2 . (80.21)

80.4) a) We get a factor of g for every 3-point vertex and a factor of λ = cg2 for every 4-point
vertex. Each face gives a closed index loop, and hence a factor of N . Thus we get gV3+2V4NF .

b) The total number of propagator endpoints is 2E. In a vacuum diagram, every propagator
endpoint is attached to a vertex. Since each n-point vertex accounts for n endpoints, we have
2E = 3V3 + 4V4.

c) χ = V − E + F . (See http://www.ics.uci.edu/∼eppstein/junkyard/euler for 19 different
proofs in the case of G = 0.) Using V = V3 + V4 and 2E = 3V3 + 4V4, we also can write
χ = F − 1

2V3 − V4.

d) Setting g = λ̄1/2N−1/2, our result in part (a) is that the N dependence of each vacuum
diagram is given by N−V3/2−V4NF = NF−V3/2−V4 = Nχ = N2−2G .
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81 Scattering in Quantum Chromodynamics

81.1) If we choose q1 = q3 = k2 and q2 = q4 = k3, then all polarization products vanish except
ε1 ·ε4 = 〈3 1〉 [4 2]/〈3 4〉 [2 1]. Also, the analysis beginning after eq. (81.14) and leading to
eq. (81.21) still holds, and we still have k5 ·ε2 = −k1 ·ε2. The remaining factors are now
k1 ·ε2 = 〈3 1〉 [1 2]/

√
2 〈3 2〉 and k4 ·ε3 = [2 4] 〈4 3〉 /

√
2 [2 3]. Putting all this together and

canceling (most) common factors, we find

A =
〈1 3〉2 [2 4]2 〈3 4〉

〈1 2〉 〈2 3〉 〈3 4〉 [1 2] [2 3]
. (81.61)

In the numerator, use [2 4] 〈3 4〉 = −[2 1] 〈3 1〉, and cancel −[2 1] with the [1 2] in the denomi-
nator. Now multiply numerator and denominator by 〈4 1〉, use [2 4] 〈4 1〉 = −[2 3] 〈3 1〉 in the
numerator, and cancel the [2 3] with the one in the denominator. Using −〈3 1〉 = 〈1 3〉 in the
numerator then yields

A =
〈1 3〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 , (81.62)

which agrees with eq. (81.37).

81.2) Using p5 = −p1−k4 in the first diagram, we see that the first line of eq. (81.47) is proportional
to [2|/ε3/p1/ε4|1〉+[2|/ε3/k4/ε4|1〉. With q4 = k1, we have /ε4 ∝ |4〉[1|+|1]〈4|, and so /ε4|1〉 ∝ |1]〈4 1〉.
We also have /p1 ∝ |1〉[1| + |1]〈1|, and so /p1/ε4|1〉 = 0. Similarly, with q3 = k4, we have
/ε3 ∝ |3]〈4|+ |4〉[3|, and so [2|/ε3 ∝ [2 3]〈4|. We also have /k4 ∝ |4〉[4|+ |4]〈4|, and so [2|/ε3/k4 = 0.
Thus both terms in the first line of eq. (81.47) vanish with this choice of reference momenta.

In the second diagram, we have V345 = −i
√

2g[(ε3ε4)(k3ε5) + (ε4ε5)(k4ε3) + (ε5ε3)(k5ε4)]
with k5 = −k3−k4. For q3 = k4, ε3 ·ε4 = 0 and k4 ·ε3 = 0, so the first two terms in V345

vanish. Also, k5 ·ε4 = −k3 ·ε4 − k4 ·ε4 = −k3 ·ε4. Thus V345 = i
√

2g(ε5ε3)(k3ε4). Making the
replacement εµ5ε

ν
5 → igµν/s12 then yields

A = − [2|/ε3|1〉 k3 ·ε4
s12

. (81.63)

We have [2|/ε3|1〉 =
√

2 [2 3] 〈4 1〉/〈4 3〉, k3 ·ε4 = [1 3] 〈3 4〉/
√

2 [1 4], and s12 = 〈1 2〉 [2 1]; there-
fore

A = − [2 3] 〈4 1〉 [1 3] 〈3 4〉
〈4 3〉 [1 4] 〈1 2〉 [2 1]

. (81.64)

In the numerator, use [1 3] 〈3 4〉 = −[1 2] 〈2 4〉, and cancel the −[1 2] with [2 1] in the denomina-
tor. Now multiply numerator and denominator by 〈4 1〉, use [1 4] 〈4 1〉 = s14 = s23 = 〈2 3〉 [3 2]
in the denominator, and cancel the [3 2] with −[2 3] in the numerator. Finally, multiply
numerator and denominator by 〈4 1〉 and use 〈4 1〉 = −〈1 4〉 to get

A =
〈1 4〉3 〈2 4〉

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 , (81.65)

which agrees with eq. (81.55).
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81.3) We take q3 = k4 and q4 = k3 and follow the analysis that led to eq. (81.50), which now reads

A = 1
2 [2|/ε3−(/p1+/k4)/ε4+ |1〉/(−s14) . (81.66)

We have /ε3− =
√

2(|3〉[4| + |4]〈3|)/[4 3], /ε4+ =
√

2(|3〉[4| + |4]〈3|)/〈3 4〉, so

A =
[2 4] 〈3 1〉 [1 4] 〈3 1〉

[4 3] 〈3 4〉 s14
. (81.67)

Use s14 = 〈4 1〉 [1 4] and cancel the [1 4]. Now multiply numerator and denominator by 〈1 3〉
and use 〈1 3〉 [4 3] = −〈1 2〉 [4 2] in the denominator, and cancel the −[4 2] with [2 4]. Finally
multiply numerator and denominator by 〈2 3〉 to get

A =
〈1 3〉3 〈2 3〉

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 , (81.68)

which is the same as eq. (81.56).

81.4) a) The double-line picture for Tr(T aT bT cT d) is
a b c d

To compute Tr(T aT aT cT c), we connect a and b with the propagator of fig. 80.5, and also c
and d. This results in four diagrams

with coefficients 1, −1/N , −1/N , and +1/N2; arrows have been omitted. Each closed loop
results in a factor of N ; these diagrams have 3, 2, 2, and 1 closed loops, respectively. Thus,
Tr(T aT aT cT c) = N3 − (1/N)N2 − (1/N)N2 + (1/N2)N = (N2−1)2/N .

To compute Tr(T aT bT aT b), we connect a and c with the propagator of fig. 80.5, and also b
and d. This results in four diagrams

with coefficients 1, −1/N , −1/N , and +1/N2; arrows have been omitted. Each closed loop
results in a factor of N ; these diagrams have 1, 2, 2, and 1 closed loops, respectively. Thus,
Tr(T aT aT cT c) = N − (1/N)N2 − (1/N)N2 + (1/N2)N = −(N2−1)/N .

b) Using the cyclic property of the trace, we have Tr(T a
R
T b

R
T b

R
T a

R
) = Tr(T a

R
T a

R
T b

R
T b

R
). Using

T a
R
T a

R
= C(R)I, we get Tr(T a

R
T b

R
T b

R
T a

R
) = C2(R)D(R) = T 2(R)D2(A)/D(R).

We use T a
R
T b

R
= T b

R
T a

R
+ ifabcT c

R
to get

Tr(T a
R
T b

R
T a

R
T b

R
) = Tr(T b

R
T a

R
T a

R
T b

R
) + ifabc Tr(T c

R
T a

R
T b

R
)

= T 2(R)D2(A)/D(R) + 1
2 if

abc Tr(T c
R
[T a

R
, T b

R
])

= T 2(R)D2(A)/D(R) − 1
2f

abcfabdTr(T c
R
T d

R
)

= T 2(R)D2(A)/D(R) − 1
2T (A)δcd T (R)δcd

= T 2(R)D2(A)/D(R) − 1
2T (A)T (R)D(A) . (81.69)

Using T (N) = 1, T (A) = 2N , D(R) = N , and D(A) = N2−1, we reproduce eqs. (81.58) and
(81.59).
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81.5) Squaring eqs. (81.55) and (81.56), we have

|A(1−q̄ , 2
+
q , 3

+, 4−)|2 = s314s13/s
2
12s

2
14 = s14s13/s

2
12 = ut/s2 ,

|A(1−q̄ , 2
+
q , 3

−, 4+)|2 = s313s14/s
2
12s

2
14 = s313/s

2
12s14 = t3/s2u . (81.70)

Changing the signs of all helicities is equivalent to complex conjugation, and thus yields the
same values of |A|2. Thus we have

∑

helicities

|A3|2 = 2(t3/u+ tu)/s2 . (81.71)

Swapping 3 ↔ 4 is equivalent to t↔ u, so
∑

helicities

|A4|2 = 2(u3/t+ tu)/s2 . (81.72)

Adding these, we find
∑

helicities

(
|A3|2 + |A4|2

)
= 2(t3/u+ 2tu+ u3/t)/s2 . (81.73)

We must also evaluate A∗(1−q̄ , 2
+
q , 3

+, 4−)A(1−q̄ , 2
+
q , 4

−, 3+). Complex conjugation changes all
angle brackets to square brackets, with an even number of additional minus signs. Then we
have

A∗(1−q̄ , 2
+
q , 3

+, 4−)A(1−q̄ , 2
+
q , 4

−, 3+) =
[1 4]3 [2 4] 〈1 4〉3 〈2 4〉

[1 2] [2 3] [3 4] [4 1] 〈1 2〉〈2 4〉〈4 3〉〈3 1〉

=
(−s14)3 (−s24)

(−s12) (s34) [2 3] 〈3 1〉 [4 1] 〈2 4〉 . (81.74)

Now we use [2 3] 〈3 1〉 = −[2 4] 〈4 1〉 in the denominator, followed by −[2 4] 〈2 4〉 = s24 = t and
−〈4 1〉 [4 1] = s14 = u and s34 = s12 = s to get

A∗(1−q̄ , 2
+
q , 3

+, 4−)A(1−q̄ , 2
+
q , 4

−, 3+) = u2/s2 . (81.75)

This is real, so taking the complex conjugate yields

A∗(1−q̄ , 2
+
q , 4

−, 3+)A(1−q̄ , 2
+
q , 3

+, 4−) = u2/s2 . (81.76)

Swapping 3 ↔ 4 in eqs. (81.75) and (81.76) yields

A∗(1−q̄ , 2
+
q , 4

+, 3−)A(1−q̄ , 2
+
q , 3

−, 4+) = t2/s2 , (81.77)

A∗(1−q̄ , 2
+
q , 3

−, 4+)A(1−q̄ , 2
+
q , 4

+, 3−) = t2/s2 . (81.78)

Adding up eqs. (81.75–81.78) and the same with all helicities flipped (which is equivalent to
complex conjugation), we find

∑

helicities

(
A∗

3A4 +A∗
4A3

)
= 4(t2 + u2)/s2 . (81.79)

81.6) See page 19 of “Calculating Scattering Amplitudes Efficiently” by Lance Dixon, available
online at http://arXiv.org/hep-ph/9601359.
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82 Wilson Loops, Lattice Theory, and Confinement

82.1) We have

〈0|WC |0〉 = exp

[
− g2

8π2

∮

C
dxµ

∮

C
dyµ

1

(x− y)2

]
, (82.42)

where C is a circle of radius R. Since the integrand depends only on x − y, we can fix
yµ = R(1, 0) and replace

∮
C dyµ with 2πR(0, 1). Then we set xµ = R(cos θ, sin θ) and dxµ =

R(− sin θ, cos θ)dθ. We then have

∮

C
dxµ

∮

C
dyµ

1

(x− y)2
= 2π

∫ +π

−π

cos θ dθ

(cos θ − 1)2 + (sin θ)2

= 2π

∫ +π

−π

cos θ dθ

2(1 − cos θ)

= 2π

∫ π

0

cos θ dθ

1 − cos θ
. (82.43)

We are instructed to set the integrand to zero if (x−y)2 < a2; since (x−y)2 = 2R2(1−cos θ) ≃
R2θ2 for θ ≪ 1, the lower limit of integration should be a/R rather than zero. The integral
is then dominated by the low end, and we can make the replacements cos θ → 1 in the
numerator, and 1 − cos θ → 1

2θ
2 in the denominator. Then we have

∮

C
dxµ

∮

C
dyµ

1

(x− y)2
= 4π

∫

a/R

dθ

θ2

=
4πR

a
+O(1)

=
2P

a
+O(1) . (82.44)

Thus
〈0|WC |0〉 = exp[−(g2/4π2a)P ] , (82.45)

so c̃ = 1/4π2.



Mark Srednicki Quantum Field Theory: Problem Solutions 134

83 Chiral Symmetry Breaking

83.1) a) Each Dirac field equals two left-handed Weyl fields. All 2nF of these Weyl fields are in
the 3 representation (because it is real). So there is a U(2nF) flavor symmetry; the U(1) is
anomalous, leaving a nonanomalous flavor symmetry group SU(2nF).

b) Call the Weyl fields χαi, α = 1, 2, 3, i = 1, . . . , 2nF. The composite field is χαiχαj , and it
is symmetric on i↔ j. The condensate is 〈0|χαiχαj |0〉 = −v3δij . The general SU(2nF) flavor
transformation is χαi → Lijχαj . The δij in the condensate transforms to LikLjk = (LLT)ij .
For this to equal δij, L must be orthogonal. Thus the unbroken flavor symmetry group is
SO(2nF).

c) Number of Goldstone bosons = number of generators of SU(4) minus the number of gen-
erators of O(4) = 15 − 6 = 9.

d) The nonanomalous flavor symmetry is again SU(2nF). The composite field is εαβχαiχβj ,
and it is antisymmetric on i ↔ j. The condensate is 〈0|εαβχαiχβj |0〉 = −v3ηij , where
ηij = −ηji. We assume that η2 = −I, which yields the largest possible unbroken subgroup,
Sp(2nF); see problem 24.4. Number of Goldstone bosons = number of generators of SU(4)
minus the number of generators of Sp(4) = 15 − 10 = 5.

83.2) So that 〈0|Hmass|0〉 is negative, and lowers the energy.

83.3) Let Π(x) = πa(x)T a/fπ. Then U = 1 + 2iΠ − 2Π2 − 4
3 iΠ

3 and ∂µU = 2i∂µΠ − 2[(∂µΠ)Π +
Π(∂µΠ)] − 4

3 i[(∂µΠ)Π2 + Π(∂µΠ)Π + Π2(∂µΠ)]. ∂µU
† is the same, with i→ −i. Then

∂µU †∂µU = 4∂µΠ∂µΠ + 4[(∂µΠ)Π + Π(∂µΠ)][(∂µΠ)Π + Π(∂µΠ)]

− 8
3∂µΠ[(∂µΠ)Π2 + Π(∂µΠ)Π + Π2(∂µΠ)]

− 8
3 [(∂µΠ)Π2 + Π(∂µΠ)Π + Π2(∂µΠ)]∂µΠ . (83.35)

Taking the trace and using the cyclic property, we find

Tr ∂µU †∂µU = 4Tr ∂µΠ∂µΠ + (8−32
3 )Tr Π2∂µΠ∂µΠ + (8−16

3 )Tr Π(∂µΠ)Π(∂µΠ)

= 4f−2
π πaπbTrT aT b − 8

3f
−4
π [πaπb∂µπc∂µπ

d − πa(∂µπb)πc(∂µπ
d)]Tr T aT bT cT d .

(83.36)

TrT aT b = 1
2δ
ab. For SU(2), TrT aT bT cT d vanishes unless the indices match in pairs. Then,

using T aT b = −T bT a if a 6= b and (T a)2 = 1
4I, we get TrT aT bT cT d = 1

8(δabδcd − δacδbd +
δadδbc). Using this in eq. (83.36) yields eq. (83.13).

83.4) We need the interactions from the mass term,

Lmass = mv3 Tr(U + U †)

= mv3 Tr(2 − 4Π2 + 4
3Π4)

= −4mv3f−2
π πaπbTrT aT b + 4

3mv
3f−4
π πaπbπcπdTrT aT bT cT d

= −2mv3f−2
π πaπa + 1

6mv
3f−4
π πaπaπbπb

= −1
2m

2
ππ

aπa + 1
24m

2
πf

−2
π πaπaπbπb . (83.37)
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Combing the interaction terms in eq. (83.13) and eq. (83.37), we have

Lint = 1
6f

−2
π (πaπa∂µπb∂µπ

b − πaπb∂µπb∂µπ
a + 1

4m
2
ππ

aπaπbπb) . (83.38)

Treat all momenta as outgoing. Then

T = Vabcd(ka, kb, kc, kd)

= 1
3f

−2
π [ δabδcd(−2kakb − 2kckd + kakc + kakd + kbkc + kbkd +m2

π) + (bcd→ cdb, dbc) ]

= f−2
π [ δabδcd(s−m2

π) + δacδdb(t−m2
π) + δadδbc(u−m2

π) ] . (83.39)

83.5) Let NL ≡ PLN , NR ≡ PRN , and similarly for N . Then

L = iNL/∂NL + iNR/∂NR −mN (NRU
†NL +NLUNR)

− 1
2(gA−1)i[NLU(/∂U †)NL +NRU

†(/∂U)NR]

= iN /∂N + iNL(u
†/∂u)NL + iNR(u/∂u†)NR −mNNN

− 1
2(gA−1)i[NLu(/∂U

†)uNL + NRu
†(/∂U)u†NR] . (83.40)

/∂U = (/∂u)u + u(/∂u) ⇒ u†(/∂U)u† = u†(/∂u) + (/∂u)u† = u†(/∂u) − u(/∂u†) ≡ −2i/a. Similarly,
u(/∂U †)u = +2i/a. Also, let u†(/∂u) + u(/∂u†) ≡ −2i/v. Then eq. (83.40) becomes

L = iN /∂N −mNNN + NL(/v + /a)NL + NR(/v − /a)NR

+ (gA−1)[NL/aNL −NR/aNR ]

= iN /∂N −mNNN + N/v(PL+PR)N + gAN/a(PL−PR)N
= iN /∂N −mNNN + N/vN − gAN/aγ5N . (83.41)

83.6) From eq. (83.19), we find

Lmass = −v3f−2
π TrMΠ2

= −2v3f−2
π [(mu +md)π

+π− + (mu +ms)K
+K− + (md +ms)K

0K0

+ 1
2mu(

1√
3
η + π0)2 + 1

2md(
1√
3
η − π0)2 + 2

3msη
2] , (83.42)

Thus

m2
π± = 2v3f−2

π (mu +md) (83.43)

m2
K± = 2v3f−2

π (mu +ms) (83.44)

m2
K0K0 = 2v3f−2

π (md +ms) (83.45)

m2
π0,η = 4

3v
3f−2
π [mu +md +ms

∓ (m2
u +m2

d +m2
s −mumd −mdms −msmu)

1/2] . (83.46)

b) Expanding in mu,d/ms, we find

m2
π0 = 2v3f−2

π (mu +md) , (83.47)

m2
η = 2

3v
3f−2
π (4ms +mu +md) . (83.48)
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We add ∆m2
EM

to m2
π± and 2∆m2

EM
to m2

K±. Then we find

∆m2
EM

= m2
π± −m2

π0 = 0.00138GeV2 , (83.49)

muv
3f−2
π = 1

4( +m2
K± −m2

K0 +m2
π0 − 2∆m2

EM
) = 0.00288GeV2 , (83.50)

mdv
3f−2
π = 1

4( −m2
K± +m2

K0 +m2
π0 + 2∆m2

EM
) = 0.00624GeV2 , (83.51)

msv
3f−2
π = 1

4( +m2
K± +m2

K0 −m2
π0 − 2∆m2

EM
) = 0.11777GeV2 . (83.52)

c) mu/md = 0.46 and ms/md = 19.

d) Using eqs. (83.50–83.52) in (83.48), we find mη = 0.566GeV, 3% larger than its observed
value, 0.548GeV.

83.7) a) Focusing on the π9 dependence, we have U = 1 + iπ9/f9, detU = 1 + 3iπ9/fπ, and so
L = −1

4 [(Tr 1)f2
π + 9F 2]f−2

9 ∂µπ9∂µπ
9. Requiring the coefficient of ∂µπ9∂µπ

9 to be −1
2 yields

F 2 = 1
9(2f2

9 − 3f2
π).

b) Only the mass terms for π0, η, and π9 are different. They are now

Lmass = −2v3f−2
π [mu(

1√
3
η + π0 + rπ9)2 +md(

1√
3
η − π0 + rπ9)2

+ms(
2√
3
η + rπ9)2] , (83.53)

where r ≡ fπ/f9. Setting mu = md ≡ m, we get

Lmass = −2v3f−2
π [2m(π0)2 + 2m( 1√

3
η + rπ9)2 +ms(

2√
3
η + rπ9)2] . (83.54)

So we have m2
π = 4mv3/f2

π as before. In the limit m ≪ ms, the eigenvalues of the η-π9

mass-squared matrix are m2
η = 8

3ms(1 + 3
4r

2)v3f−2
π and

m2
9 =

9r2

4 + 3r2
m2
π . (83.55)

Thus the maximum possible value of m9 is
√

3mπ, attained in the limit f9 → 0.

83.8) We have

L = − c1N(MPL +M †PR)N − c2N(U †M †U †PL + UMUPR)N

− c3 Tr(MU +M †U †)N(U †PL + UPR)N

− c4 Tr(MU −M †U †)N(U †PL − UPR)N

= − c1N (uMuPL + u†M †u†PR)N − c2N (u†M †u†PL + uMuPR)N
− c3 Tr(MU +M †U †)NN − c4 Tr(MU −M †U †)Nγ5N

= − 1
2c+N (uMu+ u†M †u†)N + 1

2c−N (uMu− u†M †u†)γ5N
− c3 Tr(MU +M †U †)NN − c4 Tr(MU −M †U †)Nγ5N , (83.56)

where c± = c1 ± c2, and c1,2,3 are numerical coefficients. Now set u = 1; then the first term
contributes c+M to the nucleon mass matrix, and hence makes a contribution of c+(mu−md)
to the proton-neutron mass difference, mp − mn = −1.3MeV. Using mu = 1.7MeV and



Mark Srednicki Quantum Field Theory: Problem Solutions 137

md = 3.9MeV yields c+ = 0.6. However, the electomagnetic mass of the proton is comparable
in size to the proton-neutron mass difference, so a better estimate of c+ comes from the
masses of baryons with strange quarks, c+(ms− 1

2mu− 1
2md) = mΞ0 −mΣ0 = 122MeV; using

ms = 76MeV yields c+ = 1.7. We will need this number in section 94.
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84 Spontaneous Breaking of Gauge Symmetries

84.1) a) We have V = 1
2m

2v2∑
i α

2
i + 1

4λ1v
4∑

i α
4
i + 1

4v
4λ2(

∑
i α

2
i )

2. Differentiating with respect
to v and imposing

∑
i α

2
i = 1 yields m2v + [λ1A(α) + λ2B(α)]v3, where A(α) ≡ ∑

i α
4
i and

B(α) ≡ 1. Setting this to zero, solving for v, and plugging back into V yields eq. (84.18).

b) The coefficient of v4 in V is λ1A(α)+λ2B(α), so if this is negative the v4 term is negative,
and becomes arbitrarily large for large v.

c) Since λ1A(α)+λ2B(α) must be positive, and since V is proportional to its negative inverse,
making λ1A(α) + λ2B(α) as small as possible will make V as negative as possible.

d) We want to extremize V , and hence λ1A(α) + λ2B(α), and hence
∑
i α

4
i . To impose the

constraints
∑
i α

2
i = 1 and

∑
i αi = 0, we extremize

∑
i(

1
4α

4
i + 1

2aα
2
i + bαi), where a and b are

Lagrange multipliers. This yields a cubic equation for each αi, α
3
i + aαi + b = 0, which has

at most three different solutions. The sum of these roots equals minus the coefficient of the
quadratic term, which is zero.

e) Recall that any set of N numbers xi with mean x̄ = N−1∑
i xi obeys

∑
i(xi − x̄)2 ≥ 0 or

equivalently
∑
i x

2
i ≥ Nx̄2 = N−1(

∑
i xi)

2. Letting xi = α2
i we have

∑
i α

4
i ≥ N−1(

∑
i α

2
i )

2 =
N−1. This inequality is saturated by (and only by) αi = ±N−1/2. To have

∑
i αi = 0 is then

possible only if N is even, and only if there are equal numbers of plus and minus signs; that
is, N+ = N− = 1

2N .

For N odd, the inequality cannot be saturated, and so things are more complicated; see
L. F. Li, Phys. Rev. D 9, 1723 (1974), Appendix B. The following simplified analysis is due
to Richard Eager.

First assume that only two of the three allowed values of the αi’s occur; call these two
values β+ and β−. We suppose that β± occurs N± times, with N+ + N− = N . We then
have

∑
i αi = N+β+ + N−β− = 0 and

∑
i α

2
i = N+β

2
+ + N−β2

− = 1, which implies β2
± =

N∓/N±N . Letting N+ = 1
2(N+∆) and N− = 1

2 (N−∆), we find
∑
i α

4
i = N+β

4
+ + N−β4

− =
(N2+3∆2)/(N3−N∆2), which is a monotonically increasing function of ∆; therefore the
minimum is achieved for the smallest possible value of ∆, which is zero for even N and one
for odd N . For odd N the minimum value of

∑
i α

4
i is then (N2+3)/(N3−N).

Now suppose that all three possible values of the αi’s appear; call these values β+, β−, and
β0. We will show that

∑
i α

4
i is larger than (N2+3)/(N3−N), its minimum value when only

β+ and β− appear. Hence the solution with only β+ and β− is preferred.

Label the αi’s so that α1 = β+, α2 = β−, and α3 = β0. Let r ≡ β2
+ + β2

− + β2
0 . Then we

have
∑N
i=4 α

2
i = 1−r, and so

∑N
i=4 α

4
i ≥ (N−3)−1(

∑N
i=4 α

2
i )

2 = (N−3)−1(1−r)2. From part
(d), we have β+ + β− + β0 = 0. An identity satisfied by any three numbers that sum to
zero is β4

+ + β4
− + β4

0 = 1
2(β2

+ + β2
− + β2

0)2, which in our case becomes β4
+ + β4

− + β4
0 = 1

2r
2.

Therefore
∑N
i=1 α

4
i = 1

2r
2 +

∑N
i=4 α

4
i ≥ 1

2r
2 +(N−3)−1(1−r)2. Minimizing the right-hand side

with respect to r, we get r = 2/(N−1) and hence
∑N
i=1 α

4
i ≥ 1/(N−1), which is larger than

(N2+3)/(N3−N) for N > 3.

For N = 3, minima with all three values appearing have the same energy as minima with
only two. This is an accidental degeneracy that is lifted by quantum corrections.
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85 Spontaneously Broken Abelian Gauge Theory
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86 Spontaneously Broken Nonabelian Gauge Theory

86.1) a) Let φ′i ≡ φi+d(R), so that ϕi = 1√
2
(φi + iφ′i). Also, let Ra ≡ ReT a

R
and Ja ≡ ImT a

R
.

Substituting these into δϕi = −iθa(T a
R
)i
jϕj, we get

δφi + iδφ′i = −iθa[(Ra)ij + i(Ja)i
j ](φj + iφ′j)

= θa[(Ja)i
jφj + (Ra)i

jφ′j ] + iθa[−(Ra)i
jφj + (Ja)i

jφ′j] . (86.28)

This can be written as (
δφ

δφ′

)
= −iθa

(
iJa iRa

−iRa iJa

)(
φ

φ′

)
. (86.29)

Thus we identify

T a = i

(
Ja Ra

−Ra Ja

)
. (86.30)

b) From eq. (86.30), we have

T aT b = −
(
JaJb −RaRb JaRb +RaJb

−RaJb − JaRb −RaRb + JaJb

)
, (86.31)

and hence

[T a,T b] =

(
[Ra, Rb] − [Ja, Jb] −[Ra, Jb] − [Ja, Rb]

[Ra, Jb] + [Ja, Rb] [Ra, Rb] − [Ja, Jb]

)
. (86.32)

From [T a
R
, T b

R
] = ifabcT c

R
, we have [Ra+iJa, Rb+iJb] = ifabc(Rc+iJc). Collecting the real and

imaginary parts on each side, we find [Ra, Rb] − [Ja, Jb] = −fabcJc and [Ra, Jb] + [Ja, Rb] =
fabcRc. Using these in eq. (86.32), we find

[T a,T b] = ifabc
(

iJc iRc

−iRc iJc

)
, (86.33)

and hence [T a,T b] = ifabcT c.
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87 The Standard Model: Gauge and Higgs Sector

87.1) See eq. (88.15) and eq. (88.16).

87.2) a) e = (4π/127.9)1/2 = 0.313, g2 = e/sW = 0.652, g1 = e/cW = 0.357, v = 2MW/g2 =
247GeV.

b) GF = πα/
√

2 sin2θWM
2
W

= 1.16 × 10−5 GeV2. Actual value from muon decay is 1.166 ×
10−5 GeV2.

c) MW = 1
2g2v = ev/2sW, so GF = 1/

√
2v2. Thus a measurement of GF is a direct measure-

ment of the Higgs vacuum expectation value.

87.3) a) From problem 86.1 we have

T a = i

(
Ja Ra

−Ra Ja

)
, (87.28)

where Ra ≡ ReT a and Ja ≡ ImT a. This yields

T 1 =
i

2




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 , T 2 =

i

2




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

T 3 =
i

2




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 , Y =

i

2




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 . (87.29)

b) We have F ai = iga(T a)ijvj , where vj = vδj1 in our case. Letting T 4 ≡ Y, we have ga → g2
for a = 1, 2, 3 and ga → g1 for a = 4. We find

F ai =
v

2




0 0 0 g2
0 −g2 0 0
0 0 g2 0
0 0 −g1 0


 . (87.30)

c) We have F aiF
b
i = 1

4v
2
(
· · ·
)(

· · ·
)

T

, where
(
· · ·
)

denotes the matrix in eq. (87.30). We get

F aiF
b
i =

v2

4




g2
2 0 0 0
0 g2

2 0 0
0 0 g2

2 −g1g2
0 0 −g1g2 g2

1


 . (87.31)

The eigenvalues are 1
4g

2
2v

2, 1
4g

2
2v

2, 1
4(g2

1 + g2
2)v

2, and 0, corresponding to the W+, W−, Z0,
and photon.
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87.4) Let’s begin with the WWγ vertex. Consider the third term on the first line of eq (87.27),
−(DµW+ν)†DµW

+
ν . It has the structure of a kinetic term for a complex scalar field that

carries an index ν. In analogy with fig. 61.1, the vertex factor for

Wµ Wν

−p q

Aρ

would be ie(−p + q)ρgµν . (The arrow direction corresponds to charge flow.) However, this
vertex arises from the three-gauge-boson vertex in the SU(2) part of the gauge group, which
has the structure of eq. (72.5). Thus the remaining terms in L that contribute to the WWγ
vertex must conspire to reproduce this structure. Thus we have a complete WWγ vertex
factor of

iVµνρ
WWγ(p, q, r) = −ie[(p−q)ρgµν + (q−r)µgνρ + (r−p)νgρµ] , (87.32)

where r = −p−q is the outgoing momentum of the photon.

Since Dµ = ∂µ−ie(Aµ+cot θWZµ), the WWZ vertex is given by eq. (87.32) with e→ e cot θW,

iVµνρ
WWZ(p, q, r) = −i(e cot θW)[(p−q)ρgµν + (q−r)µgνρ + (r−p)νgρµ] , (87.33)

From the last two terms on the first line of eq (87.27), we see that the γγWW interaction is

LγγWW = −e2(gµνgρσ − gµρgνσ)AµAνW
−
ρ W

+
σ

= −1
2e

2(2gµνgρσ − gµρgνσ − gµσgνρ)AµAνW
−
ρ W

+
σ . (87.34)

Similarly, the γZWW and ZZWW interactions are

LγZWW = −(e2 cot θW)(2gµνgρσ − gµρgνσ − gµσgνρ)AµZνW
−
ρ W

+
σ , (87.35)

LZZWW = −1
2(e2 cot2 θW)(2gµνgρσ − gµρgνσ − gµσgνρ)ZµZνW

−
ρ W

+
σ , (87.36)

and from the third line of eq. (87.27),

LWWWW = +1
4(e2/ sin2 θW)(2gµνgρσ − gµρgνσ − gµσgνρ)W+

µ W
+
ν W

−
ρ W

−
σ . (87.37)

These yield the vertex factors

iVµνρσ
γγWW = −ie2(2gµνgρσ − gµρgνσ − gµσgνρ) , (87.38)

iVµνρσ
γZWW = −i(e2 cot θW)(2gµνgρσ − gµρgνσ − gµσgνρ) , (87.39)

iVµνρσ
ZZWW = −i(e2 cot2 θW)(2gµνgρσ − gµρgνσ − gµσgνρ) , (87.40)

iVµνρσ
WWWW = +i(e2/ sin2 θW)(2gµνgρσ − gµρgνσ − gµσgνρ) . (87.41)

For the WWWW vertex, the µ and ν lines have incoming charge arrows and the ρ and σ
lines have outgoing charge arrows.
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From the fourth line of eq. (87.27), we read off the vertex factors for interactions between the
physical Higgs boson H and the gauge bosons,

iVµν
HWW = −2i(M2

W
/v)gµν , (87.42)

iVµν
HZZ = −2i(M2

Z
/v)gµν , (87.43)

iVµν
HHWW = −2i(M2

W
/v2)gµν , (87.44)

iVµν
HHZZ = −2i(M2

Z
/v2)gµν . (87.45)

From the last line of eq. (87.27), we read off the vertex factors for the self-interactions of H,

iV3H = −3i(m2
H
/v) , (87.46)

iV4H = −3i(m2
H
/v2) . (87.47)

Since we did not include the unphysical Goldston boson explicitly, we are implicitly working
in unitary gauge (equivalently, R∞ gauge), and so the W and Z propagators are given by
eq. (85.39),

∆µν(k) =
gµν + kµkν/M2

k2 +M2 − iǫ
, (87.48)

where M is MW or MZ. The propagator for the physical Higgs boson is

∆(k2) =
1

k2 +m2
H
− iǫ

. (87.49)

87.5) For H → W+W−, the vertex factor is −2i(M2
W
/v)gµν , and thus the decay amplitude is

T = −2(M2
W
/v)(ε1 ·ε2), where εµ1 and εµ2 are the outgoing W polarizations. (We drop primes

on outgoing quantities for notational convenience.) Summing |T |2 over outgoing polarizations
and using eq. (85.16), we get

〈|T |2〉 =
4M4

W

v2

(
gµν +

kµ1k
ν
1

M2
W

)(
gµν +

k2µk2ν

M2
W

)
, (87.50)

where k2
1 = k2

2 = −M2
W

and 2k1 ·k2 = (k1 + k2)
2 − k2

1 − k2
2 = −m2

H
+ 2M2

W
. Thus we have

〈|T |2〉 =
4M4

W

v2

(
4 − 1 − 1 +

(k1 ·k2)
2

M4
W

)

=
m4

H

v2

(
1 − 4M2

W

m2
H

+
12M4

W

m4
H

)
. (87.51)

We then have

ΓH→W+W− =
〈|T |2〉
16πmH

(
1 − 4M2

W

m2
H

)

=
m3

H

16πv2

(
1 − 4M2

W

m2
H

+
12M4

W

m4
H

)(
1 − 4M2

W

m2
H

)
. (87.52)
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Using v = 246GeV and MW = 80.4GeV, we get Γ = 0.620GeV for mH = 200GeV.

The calculation for H → Z0Z0 is identical, except that there is a symmetry factor of S = 2.
So we get

ΓH→Z0Z0 =
m3

H

32πv2

(
1 − 4M2

Z

m2
H

+
12M4

Z

m4
H

)(
1 − 4M2

Z

m2
H

)
. (87.53)

Using v = 246GeV and MZ = 91.2GeV, we get Γ = 0.152GeV for mH = 200GeV.
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88 The Standard Model: Lepton Sector

88.1) We already checked all possible fermion mass terms in eq. (88.4). To get an allowed Yukawa
coupling, we note that the only scalar field is a 2 of SU(2), and that 2 ⊗ 2 ⊗ 2 and 2 ⊗ 1 ⊗ 1
do not contain a 1, so the only possible Yukawa couplings allowed by SU(2) are ϕℓē and
ϕ†ℓē. We have ϕ† ∼ (2,+1

2 ), and so the sum of the hypercharges is not zero for the second
possibility; thus it is not allowed. Finally, adding more fields increases the dimension beyond
four, so there are no other terms to consider. Q.E.D.

88.2) This follows immediately from eq. (75.8) for PLΨ. Neutrinos are created by b† operators, and
antineutrinos by d† operators. Eq. (75.8) shows that a particle created by a b† must have
helicity −1

2 , while a particle created by a d† must have helicity +1
2 .

88.3) Written in terms of fields with definite mass, eq. (88.33) contains a factor of
∑

I
yIϕℓI ēI , where

gauge-group indices have been suppressed. This is invariant under a global transformation
ℓI → e−iαI ℓI , ēI → e+iαI ēI , with an independent phase αI for each generation. Eq. (88.32) is
also invariant under this transformation. The Dirac fields EI and NLI each have charge +1
under the transformation associated with that generation, and charge zero under the other
two transformations. So the electron and electron-neutrino have electron number +1, and
muon and tau number zero.

88.4) The amplitude that follows from eq. (88.36) is T = 2
√

2GF(u ′
3γ
µPLv

′
2)(u

′
1γµPLu1), and, using

γµPL = γµPL, its complex conjugate is T ∗ = 2
√

2GF(v ′2γ
νPLu

′
3)(u1γνPLu

′
1). Summing over

the final spins and averaging over the initial spin, we have

〈|T |2〉 = 1
2(2

√
2)2G2

F Tr[(−/p1+mµ)γνPL(−/p ′1)γµPL] Tr[(−/p ′2)γ
νPL(−/p ′3+me)γ

µPL]

= G2
F Tr[/p1γν /p ′1γµ(1−γ5)] Tr[/p ′2γ

ν /p ′3γ
µ(1−γ5)]

= 16G2
F[p1νp

′
1µ + p1µp

′
1ν − (p1p

′
1)gµν + iεανβµp

α
1 p

′β
1 ]

× [p′ν2 p
′µ
3 + p′µ2 p

′ν
3 − (p′2p

′
3)g

µν + iεγνδµp′2γp
′
3δ]

= 16G2
F([p1νp

′
1µ + p1µp

′
1ν − (p1p

′
1)gµν ][p

′ν
2 p

′µ
3 + p′µ2 p

′ν
3 − (p′2p

′
3)g

µν ]

− εανβµε
γνδµpα1 p

′β
1 p

′
2γp

′
3δ)

= 16G2
F[2(p1p

′
2)(p

′
1p

′
3) + 2(p1p

′
3)(p

′
1p

′
2) − 2(p′2p

′
3)(p1p

′
1) − 2(p1p

′
1)(p

′
2p

′
3) + 4(p1p

′
1)(p

′
2p

′
3)

+ 2(δα
γδβ

δ − δα
δδβ

γ)pα1 p
′
1
βp′2γp

′
3δ]

= 32G2
F[(p1p

′
2)(p

′
1p

′
3) + (p1p

′
3)(p

′
1p

′
2)

+ (p1p
′
2)(p

′
1p

′
3) − (p1p

′
3)(p

′
1p

′
2)]

= 64G2
F(p1p

′
2)(p

′
1p

′
3) . (88.50)

88.5) a) Only the neutral current contributes to νµe
− → νµe

−, so we have Leff = 2
√

2GFJ
µ
Z JZµ,

with the relevant terms in the current given by

JµZ = Jµ3 − s2
W
JµEM

= 1
4Nγµ(1−γ5)N − 1

4Eγµ(1−γ5)E + s2
W
EγµE

= 1
4Nγµ(1−γ5)N + 1

2Eγµ[(−1
2 + 2s2

W
) + 1

2γ5]E . (88.51)
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Thus we find Leff = 1√
2
GFNγµ(1−γ5)N Eγµ(CV−CAγ5)E with CV = −1

2 +2s2
W

and CA = −1
2 .

b) Both the charged and neutral currents contribute to νee
− → νee

−. The neutral current
analysis is the same as above. The extra contribution to Leff from the charged current is

∆Leff = 2
√

2GFJ
+µJ−

µ

= 1√
2
GFEγµ(1−γ5)N Nγµ(1−γ5)E

= 1√
2
GFNγµ(1−γ5)N Eγµ(1−γ5)E , (88.52)

where the last line follows from the Fierz identity, eq (36.62). We see that ∆CV = ∆CA = 1,
and so CV = 1

2 + s2
W

and CA = 1
2 .

c) T = 1√
2
GFu

′
νγ

α(1−γ5)uνu
′
eγα(CV−CAγ5)ue, T ∗ = 1√

2
GFuνγ

β(1−γ5)u
′
νueγβ(CV−CAγ5)u

′
e,

〈|T |2〉 = 1
4( 1√

2
GF)2 Tr[(−/pν)γ

β(1−γ5)(−/p ′ν)γ
α(1−γ5)]

× Tr[(−/pe+me)γβ(CV−CAγ5)(−/p ′e+me)γα(CV−CAγ5)] . (88.53)

Let’s evaluate the second trace:

Tr[. . .] = Tr[/peγβ(CV−CAγ5)/p
′
eγα(CV−CAγ5)] +m2

e Tr[γβ(CV−CAγ5)γα(CV−CAγ5)]

= Tr[/peγβ /p ′eγα(CV−CAγ5)
2] +m2

e Tr[γβγα(CV+CAγ5)(CV−CAγ5)]

= Tr[/peγβ /p ′eγα(C2
V
+C2

A
−2CVCAγ5)] +m2

e Tr[γβγα(C2
V
+C2

A
)]

= 4(C2
V
+C2

A
)[peβp

′
eα + peαp

′
eβ − (pep

′
e)gαβ ] + 8iCVCAερβσαp

ρ
ep

′σ
e

− 4(C2
V
+C2

A
)m2

egαβ

= 4(C2
V
+C2

A
)[peβp

′
eα + peαp

′
eβ − (pep

′
e+m

2
e)gαβ ] + 8iCVCAερβσαp

ρ
ep

′σ
e . (88.54)

We get the first trace from this one via e → ν, me → 0, CV → 1, and CA → 1, so the first
trace is

Tr[. . .] = 8[pβνp
′α
ν + pαν p

′β
ν − (pνp

′
ν)g

αβ ] + 8iελβκαpνλp
′
νκ . (88.55)

Now we have

〈|T |2〉 = 8G2
F

[
(C2

V
+C2

A
)
(
(pepν)(p

′
ep

′
ν) + (pep

′
ν)(p

′
epν) +m2

e(pνp
′
ν)
)

+ 2CVCA

(
(pepν)(p

′
ep

′
ν) − (pep

′
ν)(p

′
epν)

)]
. (88.56)

Using pepν = p′ep
′
ν = −1

2(s−m2
e), pνp

′
ν = 1

2 t = −1
2(s+u−2m2

e), pep
′
ν = p′epν = 1

2 (u−m2
e), we

get

〈|T |2〉 = 2G2
F

[
(C2

V
+C2

A
)
(
s2+u2−4m2

e(s+u)+6m4
e

)
+2CVCA

(
s2−u2−2m2

e(s−u)
)]
. (88.57)

88.6) Consider a massive vector field Zµ and a Dirac fermion field Ψ with Lint = ZµΨ(gV−gAγ5)Ψ;
then the amplitude for Z → e+e− is T = ε∗µv2γµ(gV−gAγ5)u1. (We have dropped the primes
on outgoing quantities for notational convenience). The amplitude is the same if Ψ is a
different Dirac field that is unrelated to Ψ, so it also holds for a process like W+ → e+ν.
So, first we will compute the decay rate without specifying gV and gA, and then we will find
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the values of gV and gA for the three processes of interest, Z0 → e+e−, Z0 → νeνe, and
W+ → e+ν. We will neglect the electron mass.

We have T ∗ = εν u1γν(gV−gAγ5)v2, and so, summing over final spins and averaging over the
three initial polarizations, we have

〈|T |2〉 = 1
3 (
∑

polε
νε∗µ)Tr[/p1γν(gV−gAγ5)/p2γµ(gV−gAγ5)]

= 1
3 (gµν+kµkν/M2)Tr[/p1γν(gV−gAγ5)/p2γµ(gV−gAγ5)] , (88.58)

where k = p1 + p2 is the momentum of the vector particle, and M is its mass. We evaluated
this trace in problem 88.5; we then have

〈|T |2〉 = 8
3(g2

V
+ g2

A
)(gµν+kµkν/M2)[p1µp2ν + p1νp2µ − (p1p2)gµν ]

= 4
3(g2

V
+ g2

A
)[(1 + 1 − 4 + 1)(p1p2) + 2(kp1)(kp2)/M

2] . (88.59)

We have k2 = (p1 +p2)
2 = −M2 and p2

1 = p2
2 = 0, so p1p2 = −1

2M
2. Also kpi = (p1 +p2)pi =

p1p2 = −1
2M

2. Thus the factor in square brackets evaluates to M2, and so

〈|T |2〉 = 4
3(g2

V
+ g2

A
)M2 . (88.60)

For distinguishable outgoing massless particles, we get the total decay rate by dividing by
16πM ; thus

Γ = 1
12π (g2

V
+ g2

A
)M . (88.61)

Now we consider our three processes. From eqs. (88.23) and (88.25), we see that for W+ →
e+νe, we have gV = gA = g2/2

√
2; using g2 = e/sW and e2 = 4πα, we get

ΓW+→e+νe
=

α

12s2
W

MW . (88.62)

For Z0 → νeνe, we have gV = gA = e/4sWcW, and so

ΓZ0→νeνe
=

α

24s2
W
c2
W

MZ . (88.63)

For Z0 → e+e−, we have gV = (−1
4 + s2

W
)e/sWcW and gA = −1

4e/sWcW, so

ΓZ0→e+e− =
α

24s2
W
c2
W

(1 − 4s2
W

+ 8s4
W

)MZ . (88.64)

Putting in numbers (α = 1/127.9, s2
W

= 0.231, MW = 80.4GeV, MZ = 91.2GeV), we
find ΓW+→e+νe

= 0.227GeV, ΓZ0→νeνe
= 0.167GeV, and ΓZ0→e+e− = 0.084GeV. (These

predictions are in excellent agreement with experiment.)

88.7) a) With all parameters given as MS parameters at some particular scale, any derived quantity
is also an MS parameters at that scale. Here MW should really be the MS parameter MW(µ)
with µ = MZ, but the difference between this and the physical W mass is small and can be
neglected.

b) We have GF0 = ZGGF/(
∏4
i=1 Z

1/2
i ), where Zi is the renormalizing factor for the ki-

netic term of each of the four fermion fields. In the present case, since we are consider-
ing only electromagnetic effects, and since two fields have charge zero and two have charge
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one,
∏4
i=1 Z

1/2
i = Z2, where Z2 is the renormalizing factor for a Dirac field of charge one.

Taking the logarithm, we get lnGF0 = lnGF + G(α, ε), where ln(ZG/Z2) ≡ G(α, ε) =∑∞
n=1 Gn(α)/εn. Taking d/d lnµ, we get 0 = G−1

F dGF/d lnµ + (∂G/∂α)∂α/d ln µ. Using
∂α/d ln µ = −εα + β(α), rearranging, and dropping negative powers of ε (because their
coefficients must work out to be zero), we get dGF/d lnµ = αG′

1(α)GF.

c) Let t ≡ lnµ. Then we have dGF/GF = γG(α)dt and dα/β(α) = dt, so dGF/GF =
(γG/β)dα = (c1/b1)dα/α. Integrating, we get ln[GF(µ1)/GF(µ2)] = (c1/b1) ln[α(µ1)/α(µ2)],
which yields eq. (88.47) after setting µ1 = µ and µ2 = MW.

d) For β(α) = b1α
2, integrating dα/β(α) = dt yields α(MW) = [1 + b1α(µ) ln(MW/µ)]α(µ);

plugging this into eq. (88.47) and expanding in α(µ) ln(MW/µ) yields eq. (88.48).

e) This is just eq. (36.62).

f) The one-loop diagram is exactly the same as the vertex correction in spinor electrodynamics;
in that case a photon attaches to the vertex, in the present case the neutrino current attaches
to the vertex, but in both cases what gets attached does not affect the diagram. In problem
62.2 we showed that Z1 = 1 + O(α2) in Lorenz gauge, where Z1 is the vertex renormalizing
factor; hence in the present case we have ZG = 1 +O(α2) in Lorenz gauge.

g) We also have Z2 = 1+O(α2) in Lorenz gauge. Hence ZG/Z2 = 1+O(α2) in Lorenz gauge
(and actually in any gauge), so c1 = 0. (This will change when we consider quarks, and the
process of neutron decay.)
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89 The Standard Model: Quark Sector

89.1) To get an allowed mass term, we must have an SU(3) singlet, which requires combining a 3
and a 3. However, the only 3 is also a 2 of SU(2), and both 3’s are singlets of SU(2), so any
color-singlet combination cannot be an SU(2) singlet.

Since the Higgs field is an SU(3) singlet, to get an allowed Yukawa coupling we must again
combine Weyl fields in the 3 and 3. Since there is only one 3, and two 3’s, there are just
two possibilities. Then we have the option of using either the Higgs field or its hermitian
conjugate. The hypercharges must sum to zero. This is true only for the two possibilities
listed in eqs. (89.6–7).

Adding more fields raises the dimension to greater than four, so there are no other possible
terms to consider. Q.E.D.

89.2) In problem 88.6, we showed that a vector field of mass M that couples to Dirac fields via
Lint = ZµΨγµ(gV − gAγ5)Ψ, where Ψ need not be related by hermitian conjugation to Ψ, has
a decay rate given by

Γ = 1
12π (g2

V
+ g2

A
)M . (89.38)

So we need only figure out gV and gA for the cases of interest.

For W+ → ud, we see from eqs. (89.21) and (89.34) that gV = gA = c1g2/2
√

2; using g2 = e/sW

and e2 = 4πα, and multiplying by 3 to account for the three possible colors, we get

ΓW+→ud =
αc21
4s2

W

MW . (89.39)

For Z0 → uu, we have from eq. (89.21) and (89.24–26) that gV = (1
4 − 2

3s
2
W

)e/sWcW and
gA = 1

4e/sWcW, and so

ΓZ0→uu =
α

8s2
W
c2
W

(1 − 8
3s

2
W

+ 32
9 s

4
W

)MZ . (89.40)

For Z0 → dd, we have gV = (−1
4 + 1

3s
2
W

)e/sWcW and gA = −1
4e/sWcW, and so

ΓZ0→dd =
α

8s2
W
c2
W

(1 − 4
3s

2
W

+ 8
9s

4
W

)MZ . (89.41)

Putting in numbers (α = 1/127.9, s2
W

= 0.231, c1 = 0.974, MW = 80.4GeV, MZ = 91.2GeV),
we find ΓW+→ud = 0.645GeV, ΓZ0→uu = 0.254GeV, and ΓZ0→dd = 0.327GeV. To get the
total width, we sum over generations. For W+ decay, if the top quark mass could be neglected,
the CKM matrix would cancel out in the sum. For θ2 = θ3 = 0, only the first two generations
mix, and in this case the CKM matrix cancels out in the sum over ud, us, cd, and cs. So for
W+ decay, we have three lepton generations and two quark generations, and we get

ΓW+ =
3α

4s2
W

MW . (89.42)

For Z0 decay, we have three generations of each of νν, e+e−, and dd, and two generations of
uu, for a total of

ΓZ0 =
α

24s2
W
c2
W

(21 − 40s2
W

+ 160
3 s4

W
)MZ . (89.43)



Mark Srednicki Quantum Field Theory: Problem Solutions 150

Putting in the numbers, we get ΓW+ = 2.04GeV and ΓZ0 = 2.44GeV. These are a few per
cent too low because we neglected QCD loop corrections.

89.3) The representation of the left-handed Weyl fields is three copies of (1, 2,−1
2 ) ⊕ (1, 1,+1) ⊕

(3, 2,+1
6 ) ⊕ (3̄, 1,−2

3 ) ⊕ (3̄, 1,+1
3 ). The 3–3–3 anomaly cancels if there are equal numbers

of 3’s and 3’s; in doing this counting, each SU(2) component counts separately. We see
that each generation has two 3’s from (3, 2,+1

6 ) and two 3’s from (3̄, 1,−2
3 ) ⊕ (3̄, 1,+1

3 );
thus the 3–3–3 anomaly cancels. There is no 2–2–2 anomaly because the 2 is a pseudoreal
representation. See problem 75.1 for a discussion of mixed anomalies such as 3–3–1 and 2–2–1.
In general, we require

∑
i T (Ri)Qi to vanish, where T (Ri) is the index of the representation

of the nonabelian group, and Qi is the U(1) charge. For 3–3–1, each SU(2) component counts
separately. Setting T (3) = T (3) = 1, we have 2(+1

6 )+(+1
3)+(−2

3) = 0. For 2–2–1, each SU(3)
component counts separately. Setting T (2) = 1, we have (−1

2) + 3(+1
6) = 0. For 1–1–1, we

require
∑
iQ

3
i to vanish, where the sum counts each SU(2) and SU(3) component separately.

We have 1 ·2 · (−1
2)3 +1 ·1 · (+1)3 +3 ·2 · (+1

6)3 +3 ·1 · (−2
3)3 +3 ·1 · (+1

3)3 = 0. Other possible
combinations, such as 1–2–3 or 2–2–3, always involve the trace of a single SU(2) or SU(3)
generator, and this vanishes. There is also a potential gravitational anomaly that is cancelled
if
∑
iQi vanishes; we have 1 · 2 · (−1

2) + 1 · 1 · (+1) + 3 · 2 · (+1
6 ) + 3 · 1 · (−2

3) + 3 · 1 · (+1
3 ) = 0.

Finally, the global SU(2) anomaly is absent if there is an even number of 2’s; we have 1+3 = 4
2’s.

89.4) See section 97.

89.5) a) These follow immediately from eqs. (36.61–62).

b) Using eq. (89.35), we see that gluon exchange would connect U and D across the γµ vertex;
except for the group-theory factor, this is the same diagram that we had in problem 88.7, and
that is the same as the vertex correction in spinor electrodynamics. This one-loop contribution
to ZC vanishes in Lorenz gauge.

c) A photon could connect U and D. In this case, the one-loop contribution to ZC vanishes
in Lorenz gauge, just like the gluon contribution. A photon could connect E and D. In this
case, we write the interaction in the form of eq. (89.36), and make the same argument to show
that the contribution to ZC vanishes in Lorenz gauge.

d) Finally, a photon could connect E and U . In this case, we write the interaction in the
form of eq. (89.37), but now the vertex has a different structure. In particular, as noted
in the problem, EPRUC = e†u†. This has the same structure as EE = e†ē† + h.c.. Thus,
the one-loop diagram is the same as the one that gives the renormalizing factor for EE in
spinor electrodynamics, namely Zm. We must adjust the charges, though; for e†ē† the charges
are +1 and −1, while for e†u† they are +1 and −2

3 . (The problem lists the charges of the
conjugate fields, whose product is of course the same.) Thus we find that ZC is given by Zm
in spinor electrodynamics with (+1)(−1)e2 → (+1)(−2

3 )e2. In Lorenz gauge, using the result
of problem 62.2, we have ZC = 1 − ( 3

8π2 )(2
3e

2)ε−1 = 1 − α
π ε

−1.

e) The renormalizing factor for the kinetic term of each field (Z2 in spinor electrodynamics)
vanishes in Lorenz gauge. Following the analysis of problem 88.7, we define C(α, ε) ≡ lnZC =∑∞
n=1 Cn(α)/εn. Then γC(α) = αC′

1(α) = −α
π , so c1 = − 1

π .
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90 Electroweak Interactions of Hadrons

90.1) Eqs. (90.9–10) are in the standard form for a covariant derivative discussed in section 69. For
rµ = 0, eq. (90.7) also takes this standard form. For lµ = 0, eq. (90.8) also takes this standard
form. Since eq. (90.8) is the hermitian conjugate of eq. (90.7), this covers all cases.

90.2) Except for the gauge fields, this is the same as problem 83.5, and the gauge-field terms follow
from straightforward matrix multiplications.

90.3) The amplitude is T = GFc1fπk
µ
πuνγµ(1−γ5)uτ , with kπ = pτ − pν . Using /pτuτ = −mτuτ

and uν /pν = 0, we get T = −GFc1fπmτuν(1−γ5)uτ . Then 〈|T |2〉 = 1
2 (GFc1fπmτ )

2(−8pτ ·pν),
where the 1

2 is from averaging over the initial τ spin. Next we use −m2
π = k2

π = (pτ − pν)
2 =

−m2
τ − 2pτ ·pν to get −2pτ ·pν = m2

τ −m2
π, so that 〈|T |2〉 = 2(GFc1fπmτ )

2(m2
τ −m2

π). Then
Γ = |pν |〈|T |2〉/8πm2

τ , where |pν | = (m2
τ −m2

π)/2mτ , so we have

Γτ−→π−ντ
=
G2

Fc
2
1f

2
πm

3
τ

8π

(
1 − m2

π

m2
τ

)2
. (90.60)

Putting in numbers (mτ = 1.777 GeV), we get Γ = 2.43 × 10−8 GeV, corresponding to a
lifetime of h̄c/cΓ = (1.973 × 10−11 MeV cm)/[(2.998 × 1010 cm/s)(2.43 × 10−8 GeV)] = 2.71×
10−12 s for this mode. The measured lifetime of the τ− for all decay modes is 2.91 × 10−13 s,
with a branching ratio to π−ντ of 11.1%. Thus the lifetime for this particular mode is larger
by a factor of 1/0.111, or 2.62 × 10−12 s. This is about 3% below our predicted value.

90.4) a) We have

|T |2 = 1
2G

2
Fc

2
1 upγ

µ(1−gAγ5)ununγ
ν(1−gAγ5)upueγµ(1−γ5)vν̄vν̄γν(1−γ5)ue . (90.61)

We sum over final spins and use unun = 1
2 (1−γ5/z)(−/pn+mn) for the initial neutron to get

∑
sp
upγ

µ(1−gAγ5)ununγ
ν(1−gAγ5)up

= 1
2Tr(−/pp+mp)γ

µ(1−gAγ5)(1−γ5/z)(−/pn+mn)γ
ν(1−gAγ5)

= 1
2Tr /ppγ

µ/pnγ
ν(1+g2

A
−2gAγ5)

+ 1
2mpmnTr γµγν(1−g2

A
)

+ 1
2mpTr γ5/z/pnγ

νγµ(1−g2
A
)

+ 1
2mnTr /zγν /ppγ

µ[(1+g2
A
)γ5−2gA]

= 2(1+g2
A
)(pµpp

ν
n + pνpp

µ
n − pp ·pn gµν) I

+ 4igAε
αµβνppαpnβ II

− 2mpmn(1−g2
A
)gµν III

− 2imp(1−g2
A
)εαβνµzαpnβ IV

− 2imn(1+g
2
A
)εανβµzαppβ V

− 4gAmn(z
νpµp + zνpµp − z ·pp gµν) , VI
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∑
se,sν̄

ueγµ(1−γ5)vν̄vν̄γν(1−γ5)ue

= Tr(−/pe+me)γµ(1−γ5)(−/pν̄)γν(1−γ5)

= 2Tr /peγµ/pν̄ γν(1−γ5)

= 8(peµpν̄ν + peνpν̄µ − pe ·pν̄ gµν) A

+ 8iεγµδνp
γ
ep
δ
ν̄ . B

We take the products of I to VI with A to B, and use pn,p ·pe,ν̄ ≃ −mn,pEe,ν̄ . The products
that do not vanish by symmetry are

IA = +32(1+g2
A
)[(pp ·pe)(pn ·pν̄) + (pp ·pν̄)(pn ·pe)]

≃ +64(1+g2
A
)mnmpEeEν̄ ,

IIB = −32gA(εαµβνεγµδν)ppαpnβp
γ
ep
δ
ν̄

= +64gA(δαγδ
β
δ − δαδδ

β
γ)ppαpnβp

γ
ep
δ
ν̄

= +64gA[(pp ·pe)(pn ·pν̄) − (pp ·pν̄)(pn ·pe)]
≃ 0 ,

IIIA = +32mpmn(1−g2
A
)(pe ·pν̄)

= +32mnmpEeEν̄(1−g2
A
)(βe ·βν̄ − 1) ,

IVB = +16mp(1−g2
A
)(εαβνµεγµδν)zαpnβp

γ
ep
δ
ν̄

= −32mp(1−g2
A
)[(z ·pe)(pn ·pν̄) − (z ·pν̄)(pn ·pe)]

≃ +32mnmpEeEν̄(1−g2
A
)(ẑ·βe − ẑ·βν̄) ,

VB = +16mn(1+g
2
A
)(εανβµεγµδν)zαppβp

γ
ep
δ
ν̄

= +32mn(1+g
2
A
)[(z ·pe)(pp ·pν̄) − (z ·pν̄)(pp ·pe)]

≃ −32mnmpEeEν̄(1+g
2
A
)(ẑ·βe − ẑ·βν̄) ,

VIA = −64gAmn[(z ·pe)(pp ·pν̄) + (z ·pν̄)(pp ·pe)]
≃ +64mnmpEeEν̄ gA(ẑ·βe + ẑ·βν̄) ,

TOTAL ≃ +32mnmpEeEν̄
[
2(1+g2

A
) − (1−g2

A
)

+ (1−g2
A
)βe ·βν̄

+ (+(1−g2
A
) − (1+g2

A
) + 2gA) ẑ·βe

+ (−(1−g2
A
) + (1+g2

A
) + 2gA) ẑ·βν̄

]
,

where βi = pi/Ei; 〈|T |2〉 = 1
2G

2
Fc

2
1 × TOTAL, which agrees with eqs. (90.43–44).

b) We have

Γ =
1

2mn

∫
d̃pp d̃pe d̃pv̄ (2π)4δ4(pn−pp−pe−pν̄)〈|T |2〉 . (90.62)

The correlation terms integrate to zero. We then have

Γ =
G2

Fc
2
1

(2π)5
(1+3g2

A
)

∫
d3pp d

3pe d
3pv̄ δ

4(pn−pp−pe−pν̄)

=
G2

Fc
2
1

(2π)5
(1+3g2

A
)

∫
d3pe d

3pv̄ δ(mn−mp−Ee−Eν̄) , (90.63)
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where we set Ep = mp since Ep −mp ≃ p2
p/2mp ≪ Ee + Eν̄ . Now using d3pe = 4πpeEe dEe

and d3pν̄ = 4πE2
ν̄ dEν̄ , and setting ∆ = mn −mp = 1.293MeV and r = me/∆ = 0.3952, we

get

Γ =
G2

Fc
2
1

2π3
(1+3g2

A
)

∫
peEe dEeE

2
ν̄ dEν̄ δ(mn−mp−Ee−Eν̄)

=
G2

Fc
2
1

2π3
(1+3g2

A
)

∫ ∆

me

(E2
e−m2

e)
1/2Ee(∆−Ee)2 dEe

=
G2

Fc
2
1

60π3
(1+3g2

A
)∆5f(r) ,

where
f(r) = (1−9

2r
2−4r4)(1−r2)1/2 + 15

2 r
4 ln[r−1+(r−2−1)1/2] ,

and f(0.3952) = 0.4724. Thus we find Γ = (1.184 × 10−25 MeV)(1+3g2
A
). Comparing with

Γ = h̄c/cτ = (1.973 × 10−11 MeV cm)/[(2.998 × 1010cm/s)(885.7 s)] = 7.430 × 10−25 MeV, we
find gA = 1.326, about 4% higher than the actual value of gA = 1.27.

90.5) From eq. (88.48), we see that GF = GF(MW) should be replaced by [1 − c1α ln(MW/µ)]GF,
where c1 (which is not the cosine of the Cabibbo angle!) was computed to be c1 = − 1

π for the
interaction that leads to neutron decay. The scale µ should be taken to be a typical energy
in the relevant process, in this case µ ∼ mp. Since the neutron decay rate depends on G2

F,
the enhancement factor is [. . .]2 = 1 + 2

πα ln(MW/mp) ≃ 1.021. Thus the computed value of
1+3g2

A
is now smaller by 1/1.021, and we get gA = 1.310, which is an improvement, but still

too large by 3%.

90.6) We have

T = 2
√

2GF

(
1√
2
c1(k++k0)

µ
)(

1
2 ūeγµ(1−γ5)vν̄

)
, (90.64)

and so

〈|T |2〉 = c21G
2
F Tr (/k++/k0)(1−γ5)(−/pν̄)(/k++/k0)(1−γ5)(−/pe+me)

= 2c21G
2
F Tr(/k++/k0)(−/pν̄)(/k++/k0)(1−γ5)(−/pe)

= 8c21G
2
F[2(k++k0)·pν̄(k++k0)·pe − (k++k0)

2pν̄ ·pe] . (90.65)

We have k+ · pν̄ = −m+Eν̄ and k+ · pe = −m+Ee, and, since the π0 is nonrelativistic,
(k++k0)

2 ≃ −4m2
+, k0 ·pν̄ ≃ −m0Eν̄ , and k0 ·pe ≃ −m0Ee. Thus

〈|T |2〉 = 8c21G
2
F

[
8m2

+Eν̄Ee + 4m2
+(pν̄ ·pe − Eν̄Ee)

]
. (90.66)

The pν̄ ·pe term will integrate to zero, so we have

〈|T |2〉 → 32c21G
2
Fm

2
+Eν̄Ee . (90.67)

From here it is exactly the same as neutron decay, and so we get

Γ =
G2

Fc
2
1

30π3
∆5f(r)

= (2.815 × 10−22 MeV)c21 , (90.68)
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where ∆ = m+−m0 = 4.594MeV, r = me/∆ = 0.1112, and f(r) was defined in the solution to
problem 90.4. Comparing to Γ = [(1.973×10−11 MeV cm)/(2.998×1010 cm/s)](0.3972 s−1) =
2.614 × 10−22 MeV yields c1 = 0.9634, about 1% too low.

90.7) We have |T |2 = (α/πfπ)
2εµνρσεαβγδk1µk2ρk1αk2γε1νε2σε

∗
1βε

∗
2δ . Summing over the photon

polarizations yields

〈|T |2〉 = (α/πfπ)
2εµνρσεανγσk1µk2ρk

α
1 k

γ
2

= (α/πfπ)
2(2δµγδ

ρ
α − 2δµαδ

ρ
γ)k1µk2ρk

α
1 k

γ
2

= (α/πfπ)
2[2(k1 ·k2)

2 − 0] . (90.69)

Using −m2
π = (k1 + k2)

2 = 2k1 ·k2, we get

〈|T |2〉 =
α2m4

π

2π2f2
π

. (90.70)

To get a rate for outgoing identical (symmetry factor S = 2) massless particles, we divide by
32πmπ, which yields

Γ =
α2m3

π

64π3f2
π

, (90.71)

in agreement with eq. (90.59). Putting in numbers, we get Γ = 7.7 eV. The measured lifetime
(with a 7% uncertainty) is 8.4 × 10−17 s, corresponding to Γ = 7.8 eV. (The branching ratio
for this mode is 98.8% with the remaining 1.2% almost entirely e+e−γ.)
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91 Neutrino Masses

91.1) The symmetry that gives rise to lepton number conservation is ℓ → e−iαℓ, e → e+iαe. In
order for LνYuk to be invariant, we must take ν̄ → e+iαν̄ as well. But then Lν̄mass is not
invariant. This leads to processes such as µ− → e−γ, but the rate is unobservably low; see
Cheng & Li for a detailed calculation.
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92 Solitons and Monopoles

92.1) a) Let y = x/α; then
∫
dDxV (ϕi(x/α)) = αD

∫
dDy V (ϕi(y)) = αDU . Also, ∇xϕi(x/α) =

α−1∇yϕi(y), and so
∫
dDx (∇xϕi(x/α))2 = αD−2

∫
dDy (∇yϕi(y))2 = αD−2T .

b) The energy as a function of α is E(α) = αD−2T + αDU . The energy is supposed to be
minimized by the original solution, with α = 1, and hence E′(1) = 0.

c) E′(α) = (D−2)αD−3T + DαD−1U , so E′(1) = (D−2)T + DU . Since T and U are both
positive-definite, E′(1) cannot vanish for D ≥ 2.

92.2) a) U †U = 1, so δU †U + U †δU = 0. Multiplying by U †, we get δU † = −U †2δU .

b) We have

δ(U∂φU
†) = δU∂φU

† + U∂φδU
†

= δU∂φU
† + U∂φ(−U †2δU)

= δU∂φU
† + U [−2U †(∂φU

†)δU − U †2∂φδU ]

= δU∂φU
† + [−2(∂φU

†)δU − U †∂φδU ]

= −(∂φU
†)δU − U †∂φδU

= −∂φ(U †δU) . (92.64)

c) δn = i
2π

∫ 2π
0 dφ∂φ(U

†δU) = i
2πU

†δU |φ=2π
φ=0 = 0, since U is continuous and φ = 0 is identified

with φ = 2π.

92.3) Deform Un(φ) so that it equals one for 0 ≤ φ ≤ π, and deform Uk(φ) so that it equals one for
π ≤ φ ≤ 2π. The winding number for Un is then given by i

2π

∫ π
0 dφUn∂φU

†
n, and the winding

number for Uk by i
2π

∫ 2π
π dφUk∂φU

†
k , since the regions where U = 1 have ∂φU

† = 0, and hence
do not contribute to the integral. For the deformed U ’s, UnUk = Uk for 0 ≤ φ ≤ π, and
UnUk = Un for π ≤ φ ≤ 2π. Hence, in doing the winding-number integral for UnUk, we get
the winding number of Uk from 0 ≤ φ ≤ π, plus the winding number of Un from π ≤ φ ≤ 2π.
Q.E.D.

92.4) For ρ ≪ 1, a and f are small, and we can neglect them compared to 1. Eq. (92.30) then
becomes f ′′ + f ′/ρ − n2f/ρ2. Plugging in the ansatz f ∼ ρν , we find (ν2 − n2)ρν−2, and
hence ν = n (since ν = −n does not satisfy the boundary condition that f vanish at ρ = 0).
Eq. (92.31) then becomes a′′ − a′/ρ + f2 = 0. Plugging in the ansatz a ∼ ρα, we find
(α2 − 2α)ρα−2 + ρ2n. The first term dominates for α < 2n+2; in this case, we require the
coefficient to vanish, and hence α = 2 (since α = 0 does not satisfy the boundary condition
that a vanish at ρ = 0). For α = 2, the second term is subdominant for any nonzero n.

For ρ≫ 1, let a = 1−A and f = 1−F , with A and F both ≪ 1. Then, for ρ≫ 1, eq. (92.32)
becomes −A′′ +A = 0; the solution that vanishes as ρ→ ∞ is A ∼ e−ρ. Eq. (92.30) becomes
−F ′′ + β2F = 0; the solution that vanishes as ρ → ∞ is F ∼ e−βρ. However, if β > 2 then
actually it is the third term in eq. (92.30) that dominates at large ρ, since (1−a)2 = A2 ∼ e−2ρ

while the remaining terms go like e−βρ. Hence, for β > 2, we must have F ∼ e−2ρ to achieve
appropriate cancellations at large ρ.



Mark Srednicki Quantum Field Theory: Problem Solutions 157

92.5) We have

ϕ̂ = (sin θ cosnφ, sin θ sinnφ, cos θ) ,

∂θϕ̂ = (cos θ cosnφ, cos θ sinnφ, − sin θ) ,

∂φϕ̂ = (−n sin θ sinnφ, n sin θ cosnφ, 0) , (92.65)

and hence

εabcϕ̂a∂θϕ̂
b∂φϕ̂

c =

∣∣∣∣∣∣∣∣

sin θ cosnφ sin θ sinnφ cos θ

cos θ cosnφ cos θ sinnφ − sin θ

−n sin θ sinnφ n sin θ cosnφ 0

∣∣∣∣∣∣∣∣

= n sin θ . (92.66)

Also, εijεabcϕ̂a∂iϕ̂
b∂jϕ̂

c = 2εabcϕ̂a∂θϕ̂
b∂φϕ̂

c = 2n sin θ. Thus the right-hand side of eq. (92.35)

becomes n
4π

∫ 2π
0 dφ

∫ π
0 dθ sin θ = n.

92.6) a) Since ϕ̂·ϕ̂ = 1, we have both δ(ϕ̂·ϕ̂) = 2ϕ̂·δϕ̂ = 0 and ∂i(ϕ̂·ϕ̂) = 2ϕ̂·∂iϕ̂ = 0.

b) Since δϕ̂, ∂1ϕ̂, and ∂2ϕ̂ are orthogonal to ϕ̂, they lie in a plane, and so (∂1ϕ̂×∂2ϕ̂) ·δϕ̂ = 0;
equivalently, εabcδϕ̂a∂1ϕ̂

b∂2ϕ̂
c = 0. We can replace 1 and 2 with i and j, since this expression

is trivially zero for i = j. Q.E.D.

c) We have

δ(ϕ̂a∂iϕ̂
b∂jϕ̂

c) = (δϕ̂a)∂iϕ̂
b∂jϕ̂

c + ϕ̂a(∂iδϕ̂
b)∂jϕ̂

c + ϕ̂a∂iϕ̂
b(∂jδϕ̂

c) . (92.67)

We use this in eq. (92.35) to get δn. When contracted with εabc, the first term on the right-
hand side of eq. (92.67) vanishes by our result in part (b). In the second term, we integrate
∂i by parts to get

ϕ̂a(∂iδϕ̂
b)∂jϕ̂

c → −(∂iϕ̂
a)δϕ̂b∂jϕ̂

c − ϕ̂aδϕ̂b∂i∂jϕ̂
c . (92.68)

When contracted with εabc, the first term on the right-hand side of eq. (92.68) vanishes by our
result in part (b). When contracted with εij, the second term on the right-hand side vanishes
because εij∂i∂j = 0. A similar analysis applies to the third term in eq. (92.67). We conclude
that δn = 0. Q.E.D.
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93 Instantons and Theta Vacua

93.1) Let U =

(
a b
c d

)
. Then U † =

(
a∗ c∗

b∗ d∗

)
and U−1 =

1

ad− bc

(
d −b
−c a

)
. We also have

detU = ad − bc, so imposing detU = 1 we can write U−1 =

(
d −b
−c a

)
. Then U † = U−1

yields d = a∗ and c = −b∗. Let a = a4 + ia3 and b = a2 + ia1 with aµ real, so that we now

have U =

(
a4 + ia3 i(a1 − ia2)
i(a1 + ia2) a4 − ia3

)
= a4 + i~a·~σ, with detU = aµaµ = 1.

93.2) 〈n′|H|θ〉 =
∑
n e

−inθ〈n′|H|n〉 =
∑
n e

−inθf(n′ − n). Replace the dummy summation variable
n with m + n′; then 〈n′|H|θ〉 =

∑
m e

−i(m+n′)θf(−m) = e−in
′θ∑

m e
−imθf(−m) = 〈n′|θ〉Eθ,

where Eθ =
∑
m e

−imθf(−m) is the energy eigenvalue.

93.3) a) U †U = 1 implies δ(U †U) = 0, and so δU †U + U †δU = 0. Mulitply on the right by U † and
solve for δU † = −U †δUU †.

δ(U∂kU
†) = δU∂kU

† + U∂kδU
†

= δU∂kU
† − U∂k(U

†δUU †)

= δU∂kU
† − U∂kU

†δUU † − UU †∂kδUU
† − UU †δU∂kU

†

= −U∂kU †δUU † − UU †∂kδUU
†

= −U(∂kU
†δU + U †∂kδU)U †

= −U∂k(U †δU)U † . (93.46)

b) The variations of U∂iU
†, U∂jU †, and U∂kU

† contribute equally to δn after cyclic permu-
tations of the trace. We have

εijk Tr[(U∂iU
†)(U∂jU

†)δ(U∂kU
†)]

= −εijk Tr[(U∂iU
†)(U∂jU

†)U∂k(U
†δU)U †]

= −εijk Tr[∂iU
†U∂jU

†U∂k(U
†δU)] . (93.47)

We used the cyclic property of the trace and U †U = 1 to get the last line. After integrating
∂k by parts, terms with two derivatives acting on a single U † vanish when contracted with
εijk. The remaining terms are

−εijk Tr[∂iU
†U∂jU †U∂k(U

†δU)]

= + εijk(Tr[∂iU
†∂kU∂jU

†δU ] + Tr[∂iU
†U∂jU †∂kUU

†δU ]) , (93.48)

where we used UU † = 1 in the first term. In the second term, we now use U∂jU
† = −∂jUU †

and ∂kUU
† = −U∂kU †, followed by U †U = 1, to get

−εijk Tr[∂iU
†U∂jU

†U∂k(U
†δU)]

= + εijk(Tr[∂iU
†∂kU∂jU

†δU ] + Tr[∂iU
†∂jU∂kU

†δU ]) . (93.49)

The two terms are now symmetric on j ↔ k, and so cancel when contracted with εijk.

93.4) The argument is identical to the one given for problem 92.3, with three-dimensional space
(plus a point at infinity to get S3) replacing the circle S1.
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93.5) This is just plug in and grind, best done with a symbolic manipulation program like Math-
emetica. You should find that (U∂χU

†)(U∂ψU †)(U∂φU †) = −(U∂ψU
†)(U∂χU †)(U∂φU †) =

−n(sin2 χ sinψ)I, which just provides the measure for the 3-sphere. Of course the final result
is n = n.

93.6) For a unit vector n̂, (n̂·~σ)2 = I, and so exp[iχn̂·~σ] = (cosχ)+ i(sinχ)n̂·~σ. The right-hand side
of eq. (93.29) takes this form, with n̂ = (sinψ cosφ, sinψ sinφ, cosψ); hence U = exp[iχn̂·~σ],
and Un = exp[inχn̂·~σ], which is the same as U with χ→ nχ. Defining Un ≡ Un, we then find
(Un∂χU

†
n)(Un∂ψU

†
n)(Un∂φU

†
n) = −(Un∂ψU

†
n)(Un∂χU

†
n)(Un∂φU

†
n) = −n(sin2 nχ sinψ)I. Since∫ π

0 dχ sin2 nχ =
∫ π
0 dχ sin2 χ, the final result is the same as for problem 93.5, namely n = n,

which of course is in accord with the theorem of problem 93.4.
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94 Quarks and Theta Vacua

94.1) To simplify the notation let us define m̄ ≡ (c−+4c4)m̃. Then the mass terms are

−N (mN + iθm̄γ5)N = −mNN (1 + iθm̄γ5/mN )N
≃ −mNN exp(iθm̄γ5/mN )N , (94.40)

where the last approximate equality holds up to terms of order θ2m̄2/m2
N . If we now make

the field redefinition N → e−iαγ5N (which implies N → N e−iαγ5) with α = 1
2θm̄/mN ,

eq. (94.40) becomes simply −mNNN . Next we note that NγµN → N e−iαγ5γµe−iαγ5N =
Nγµe+iαγ5e−iαγ5N = NγµN , so any term with γµ or γµγ5 sandwiched between N and N is
left unchanged by this transformation. All the N -dependent terms in L that are not of this
form already have a factor of a quark mass, so the transformation N → e−iαγ5N ≃ (1−iαγ5)N
with α = O(m) will yield only terms with at least two powers of a quark mass.

94.2) a) The new Yukawa coupling is obviously invariant, and all other terms involve both the fields
and their hermitian conjugates, and so are also invariant.

b) If we define a Dirac field Ψ =

(
χ
ξ†

)
, then the PQ transformation is Ψ → e−iαγ5Ψ, which,

as we have seen, changes θ to θ + 2α.

c) yΦχξ + h.c. → 1√
2
yf(χξ + χ†ξ†) = mΨΨ, with m = 1√

2
yf ; this has the wrong sign, but

this is fixed by making the transformation of part (b) with α = 1
2π.

d) Without the effects of the anomaly, the a field would be a massless Goldstone boson, and
so is part of the low-energy theory. It gets a standard kinetic term from the kinetic term for
Φ. Since a PQ transformation changes θ by +2α and the phase of Φ (which is a/f) by −2α,
θ + a/f is invariant, and is the variable that should appear in the low-energy theory.

e) The potential is given by eq. (94.13) with θ → θ + a/f ; since a is a field its value must be
chosen to minimize the energy. The minimum occurs when the argument of each cosine is
zero, and this is achieved for φ = 0, corresponding to U = I, and a = −fθ.
f) If we substitute eq. (94.14) for φ back into eq. (94.13) and expand in powers of θ, we get
V = −2v3(mu+md) + m̄v3θ2 + . . . . We now replace θ with θ + a/f ; then the minimum is
at a = −fθ, so we write a = −fθ + ã. Dropping the constant term, the potential becomes
V = 1

2(2m̄v3/f2)ã2, and we see that m2
a = (2m̄v3/f2). Using m2

π = 2(mu+md)v
3/f2

π , we get
m2
a = [m̄/(mu+md)](fπ/f)2m2

π.

Alternatively, we can start with eq. (94.13), set a = −fθ + ã and φ = π0/fπ, find the mass-
squared matrix for π0 and ã, and diagonalize it in the limit f ≫ fπ. The two resulting
eigenvalues are m2

π and the value of m2
a that we just computed. This method gives the right

answer even if f is not much larger than fπ.

g) Since a appears in the low-energy lagrangian via the replacement θ → θ + a/f , or equiva-
lently θ → ã/f , it is obvious that ã is always accompanied (except in its kinetic term, which
has a different origin) by a factor of 1/f . Thus any interaction carries this suppression.
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95 Supersymmetry

95.1) Consider
∑
A[{Q1A, Q

†̇
1A} + {Q2A, Q

†̇
2A}]. Using eq. (92.6), we have

∑
A[{Q1A, Q

†
1̇A} + {Q2A, Q

†
2̇A}] = −2N (σµ

11̇
+ σµ

22̇
)Pµ

= −2N (2δ0
µ)Pµ

= −4NP0

= +4NH . (95.81)

Since Q1AQ
†
1̇A, Q†

1̇AQ1A, Q2AQ
†
2̇A and Q†

2̇AQ2A are all positive operators, the eigenvalues
of H must be nonnegative. A state |0〉 with H|0〉 = 0 must also obey QaA|0〉 = 0 and
Q†

ȧA|0〉 = 0, because any nonzero state |ψ〉 as a result would lead to 〈0|H|0〉 ≥ 〈ψ|ψ〉 > 0.

95.2) a) We have 〈0|{ψc, Qa}|0〉 = −i
√

2εac〈0|F |0〉. If 〈0|F |0〉 6= 0, then 〈0|(Qaψc + ψcQa)|0〉 6= 0,
and hence either Qa|0〉 6= 0 or 〈0|Qa 6= 0; the latter implies (by hermitian conjugation) that

Q†
ȧ|0〉 6= 0. Thus if 〈0|F |0〉 6= 0, either Qa|0〉 6= 0 or Q†

ȧ|0〉 6= 0. Thus the vacuum is not
annihilated by at least one supercharge, and so supersymmetry is spontaneously broken.

b) We have [V,Qa] = −i∂aV + σµaċθ
∗ċ∂µV . The relevant term in [V,Qa] is θ∗θ∗θc{λc, Qa}.

We can get a term with this theta structure either from −i∂a acting on 1
2θθθ

∗θ∗D, or from
σµaċθ

∗ċ∂µ acting on θσνθ∗vν . The latter is a mess, so much so that it is best to redefine that
components of V , replacing D with D + 1

2∂
2C and λ with λ + 1

2 iσ
µ∂µχ

† (minus signs not
guaranteed); then we get simpler transformation rules for the component fields. (See Wess

and Bagger or Weinberg III for more details.) Since the vacuum is Lorentz invariant, we have
〈0|∂νvµ|0〉 = 0, and hence 〈0|{λc, Qa}|0〉 = −iεac〈0|D|0〉. Following the argument from part
(a), we conclude that 〈0|D|0〉 6= 0 results in the spontaneous breaking of supersymmetry.

95.3) a) We have V = |∂W/∂A|2 + |∂W/∂B|2 + |∂W/∂C|2. From eq. (94.45) we have Fi =
−(∂W/∂Ai)

†, so if every Fi = 0, then every ∂W/∂Ai = 0, and hence V = 0. We have

∂W/∂A = κ(C2 − v2) ,

∂W/∂B = mC , (95.82)

∂W/∂C = mB + 2κAC . (95.83)

However, we cannot have both ∂W/∂A = 0 and ∂W/∂B = 0, since the former requires
C = v and the latter C = 0. Instead, we must minimize |∂W/∂A|2 + |∂W/∂B|2, which yields
2κC†(C2 − v2) +m2C = 0; the solution is C = ±(v2 −m2/2κ2)1/2. (We can always choose
conventions so that the sign is positive.) Then we have, at the minimum, ∂W/∂A = −1

2m
2

and ∂W/∂B = m〈C〉, where 〈C〉 ≡ (v2 −m2/2κ2)1/2. Both of these are nonzero (unless v2

happens to equal m2/2κ2 exactly). For simplicity, we take κ, v, and m to be real, and we
also assume that v2 > m2/2κ2, so that 〈C〉 is real.

b) |∂W/∂A|2 + |∂W/∂B|2 is minimized for C = 〈C〉. Minimizing |∂W/∂C|2 then yields
∂W/∂C = 0, which fixes mB + 2κ〈C〉A = 0. Thus we have 〈B〉 = −2κ〈C〉〈A〉/m, but 〈A〉
is arbitrary. This will lead to a massless (complex) scalar field corresponding to the flat
direction.
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To see this explicitly, define a mixing angle θ ≡ tan−1(2κ〈C〉/m), and new fields

X = (cos θ)A− (sin θ)B ,

Y = (sin θ)A+ (cos θ)B . (95.84)

Then 〈Y 〉 = 0 and 〈X〉 = (4κ2v2/m2−1)1/2〈A〉. We then find ∂W/∂C = (4κ2v2−m2)1/2Y +
2κ〈A〉(C−〈C〉)+ . . . , where the ellipses stand for terms quadratic in fields with zero expecta-
tion value. We see that the X field is massless. To compute the masses of the C and Y fields,
we first note that, in |∂W/∂C|, we can absorb the phase of 〈A〉 into the phase of Y , and so
we can replace 〈A〉 with |〈A〉|. Setting C = 〈C〉+ (C1 + iC2)/

√
2 and Y = (Y1 + iY2)/

√
2, we

find

V = 2κ2〈C〉2C2
1 +2κ2v2C2

2 + 1
2

∣∣∣(4κ2v2−m2)1/2(Y1+iY2)+2κ|〈A〉|(C1 +iC2)
∣∣∣
2
+ . . . , (95.85)

where the ellipses stand for cubic and quartic terms. We thus get a mass-squared matrix for
C1 and Y1 of the form

m2
C1,Y1

=

(
4κ2|〈A〉|2 + 4κ2〈C〉2 2κ|〈A〉|〈C〉

2κ|〈A〉|〈C〉 4κ2v2 −m2

)
. (95.86)

The mass-squared matrix for C2 and Y2 is the same, with 〈C〉 → v.

The fermion mass matrix is given by ∂2W/∂Ai∂Aj ; taking the fields to be X, Y , and C, we
find the ψX is massless, and that the mass matrix for ψY and ψC is

mψY ,ψC
=

(
0 (4κ2v2 −m2)1/2

(4κ2v2 −m2)1/2 2κ〈A〉

)
. (95.87)

Since ψX is the only massless fermion, it must be the goldstino. To verifiy this, we note that
〈−F †

X〉 = 〈∂W/∂X〉 = (v2 −m2/4κ2)1/2, while 〈∂W/∂Y 〉 = 〈∂W/∂C〉 = 0.

95.4) a) The kinetic terms for the components of Φ are given by eq. (95.64); to get the kinetic
terms for the components of Φ̄, we take g → −g. The gauge field kinetic terms are given
by eq. (95.77). The terms from the superpotential are given by eq. (95.37). Putting it all
together, we have

L = −(DµA)†DµA+ iψ†σ̄µDµψ + F †F +
√

2eψ†λ†A+
√

2eA†λψ − eA†DA

−(D̄µĀ)†D̄µĀ+ iψ̄†σ̄µDµψ̄ + F̄ †F̄ −
√

2eψ̄†λ†Ā−
√

2eĀ†λψ̄ + eĀ†DĀ

− 1
4F

µνFµν + iλ†σ̄µ∂µλ+ 1
2D

2

+m(AF̄ + FĀ− ψψ̄ +A†F̄ † + F †Ā† − ψ†ψ̄†) , (95.88)

where Dµ = ∂µ − ieAµ and D̄µ = ∂µ + ieAµ.

b) Eliminating F and F̄ yields −m2(A†A+ Ā†Ā). Eliminating D yields −1
2e

2(A†A− Ā†Ā)2.

95.5) a) Adding eξD to L preserves supersymmetry because an infinitesimal supersymmetry trans-
formation yields a total derivative. If the gauge group was nonabelian, D would carry an
adjoint index, and so ξD would not be gauge invariant.
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b) The terms involving D in L are now 1
2D

2−eD(A†A− Ā†Ā−ξ), and so eliminating D yields
−1

2e
2(A†A− Ā†Ā− ξ)2. Eliminating the F and F̄ fields yields −m2(A†A+ Ā†Ā) as before.

c) We have
V = m2(A†A+ Ā†Ā) + 1

2e
2(A†A− Ā†Ā− ξ)2 . (95.89)

Then

∂V/∂A† = [m2 + e2(A†A− Ā†Ā− ξ)]A ,

∂V/∂Ā† = [m2 − e2(A†A− Ā†Ā− ξ)]Ā . (95.90)

The factors in square brackets sum to 2m2, so both cannot vanish. Therefore, either A or Ā
(or both) must vanish. If both vanish, we have V = V0,0 = 1

2e
2ξ2 at the minimum. If we take

Ā = 0 and A 6= 0, then the first square bracket must vanish, which yields A†A = ξ −m2/e2;
since A†A > 0, this is possible only if ξ > m2/e2. We then have V = V∅,0 = m2ξ − 1

2m
4/e2

at the minimum. Since V∅,0 − V0,0 = −1
2(m2/e2 − ξ)2, the minimum with Ā 6= 0 is lower in

energy. Finally, if we take Ā = 0 and A 6= 0, the situation is the same, but with ξ → −ξ.
(This is obvious from the form of the potential.) We conclude that A acquires a nonzero VEV
if ξ > m2/e2, and that Ā acquires a nonzero VEV if ξ < −m2/e2.

To see that supersymmetry is broken, we note thatD = (A†A−Ā†Ā−ξ)/e. Then 〈D〉 = −m2/e
for ξ > m2/e2 and D = +m2/e for ξ < m2/e2. Also, since F † = −mĀ and F̄ † = −mA, either
〈F 〉 or 〈F̄ 〉 is also nonzero. The massless goldstino is then a linear combination of λ and ψ
(if Ā 6= 0) or ψ̄ (if A 6= 0).

95.6) a) The net R charge of any term in L must be zero. Since L has Yukawa couplings of the
form A†ψλ, and Rλ = 1, we must have RA = Rψ + 1.

b) The superpotential yields Yukawa couplings of the form (∂2W/∂Ai∂Aj)ψiψj. If W has
R charge RW , then ∂2W/∂Ai∂Aj has R charge RW − RAi

− RAj
, while ψiψj has R charge

Rψi
+Rψj

. Thus (∂2W/∂Ai∂Aj)ψiψj has R charge RW −RAi
−RAj

+Rψi
+Rψj

= RW − 2,
and this must vanish; therefore we must have RW = 2.

c) In SQED, W = mĀA, and so we must assign R charges to A and Ā such that RA+RĀ = 2.
Since A and Ā have opposite electric charge, it is most convenient to assign them both R
charge +1.
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96 The Minimal Supersymmetric Standard Model

96.1) In the Standard Model, the Yukawa couplings are of the form Hℓē, Hqd̄, and H†qū. If we
get the first two from terms in the superpotential of the form HLĒ and HQD̄, we cannot
get the third, since the superpotential cannot depend on hermitian conjugates of fields. Thus
we need a second Higgs field, H̄, with opposite hypercharge.

96.2) a) After solving for the D fields, we have Vquartic = 1
2D

aDa+ 1
2D

2, with D = 1
2g1(H̄

†H̄−H†H)
and Da = g2(H

†T aH + H̄†T aH̄), where T a = 1
2σ

a.

b) The only way the potential could be unbounded below is if the quartic terms vanish, so

we would need D = 0 and Da = 0. Setting H =

(
v
0

)
and H̄ =

(
0
v

)
achieves this. In this

case, the mass terms become (m2
1 +m2

2 − 2m2
3)v

2, so we must have m2
1 +m2

2 > 2m2
3 for the

potential to be bounded below.

c) To have symmetry breaking, we need a negative eigenvalue of the mass-squared matrix(
m2

1 m2
3

m2
3 m2

2

)
, which requires (m2

3)
2 > m2

1m
2
2.

d) One linear combination of H and H̄ gets a VEV, and the other does not. The one that gets
a VEV produces three Goldstone bosons that are eaten by the gauge fields, and one neutral
Higgs boson. The remaining linear combination has one component with unit electric charge,
and one component with zero electric charge; each component is a complex scalar field. So in
all we have one particle with positive charge, one with negative charge, and three with zero
charge.

e) Setting H = 1√
2

(
v
0

)
and H̄ = 1√

2

(
0
v̄

)
, we find

V = 1
2m

2
1v

2 + 1
2m

2
2v̄

2 −m2
3vv̄ + 1

32(g2
1 + g2

2)(v
2 − v̄2)2 . (96.7)

Differentiating with respect to v and v̄ and setting the results to zero, we find

m2
1v −m2

3v̄ + 1
8 (g2

1 + g2
2)(v

2 − v̄2)v = 0 , (96.8)

m2
2v̄ −m2

3v − 1
8 (g2

1 + g2
2)(v

2 − v̄2)v̄ = 0 . (96.9)

If we divide eq. (96.8) by v and eq. (96.9) by v̄ and add, we get

m2
1 +m2

2 −m2
3

(
v̄

v
+
v

v̄

)
= 0 , (96.10)

which immediately yields eq. (96.7).
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97 Grand Unification

97.1) With the usual normalization A(5) = 1, we have A(5̄) = −1. In the notation of problem
70.4, 10 = A, and for SU(N), A(A) = N−4. Thus A(10) = 1 for SU(5), and A(5̄ ⊕ 10) =
A(5̄) +A(10) = −1 + 1 = 0. So the SU(5) model is not anomalous.

There is another, more physical, way to see this. Let Q be the electric charge generator in the
5̄⊕10 representation. We know that all charged fermions can be represented by massive Dirac
fields, and so we know that TrQ3 must be zero. On the other hand, TrQ3 ∝ A(5̄⊕ 10)dQQQ,
so either A(5̄⊕10) = 0, or dQQQ = 0. To rule out the latter possibility, we compute TrQ3 for
a single 5̄; we get 3(+1

3)3 + (−1)3 6= 0. Thus it must be that A(5̄ ⊕ 10) = 0. [This argument
is due to R. Cahn, Phys. Lett. B104, 282 (1981).]

97.2) We have

L|∆B|=1
φ,eff =

1

M2
φ

(yεαβγ d̄ †
αū

†
β)(yε

ijqαiℓj + y′′ū†αē
†) + h.c. . (97.48)

The first term has the same structure as the first term of eq. (97.25) from X exchange, but
the second term of eq. (97.48) has a different structure than the second term of eq. (97.25).

97.3) As discussed in problems 88.7 and 89.5, diagrams where a gauge boson connects two fermions
with different handedness give no contribution to ZC in Lorenz gauge. Diagrams where a
gauge boson connects fermions of the same handedness yields Zm in Lorenz gauge, with
appropriate replacements of charge/group factors. For ZC1

, the gauge boson must connect
ℓ and q, or d̄† and ū†, and these contributions add. The appropriate replacements are those
shown in eq. (97.44). For SU(N), we have (T aN)α′

α(T aN)β′
β = 1

2 (δα′
βδβ′

α − 1
N δα′

αδβ′
β). Thus

εα
′β′γ(T a3 )α′

α(T a3 )β′
β = 1

2 (εβαγ − 1
3ε
αβγ) = −2

3ε
αβγ and εi

′j′(T a2 )i′
i(T a2 )j′

j = 1
2(εji − 1

2ε
ij) =

−3
4ε
ij, and so

ZC1
= 1 − 3

8π2 (2
3g

2
3 + 3

4g
2
2 + 11

36g
2
1)ε

−1

= 1 − 1
2π (2α3 + 9

4α2 + 11
12α1)ε

−1 (97.49)

b) The relevant replacement is

(−1)(+1)e2 →
[
0 + εα

′β′γ(T a3 )α′
α(T a3 )β′

β/εαβγ
]
g2
3

+
[
0 + εi

′j′(T a2 )i′
i(T a2 )j′

j/εij
]
g2
2

+
[
(+1)(−2

3 ) + (+1
6 )(+1

6)
]
g2
1 , (97.50)

and so

ZC2
= 1 − 3

8π2 (2
3g

2
3 + 3

4g
2
2 + 23

36g
2
1)ε

−1 .

= 1 − 1
2π (2α3 + 9

4α2 + 23
12α1)ε

−1 . (97.51)

c) In Lorenz gauge, we have Z2 = 1 for each fermion lline (at one-loop order). From problem
88.7, we then have that (at one-loop order) γi is given by the coefficient of ε−1 in ZCi

. Thus,

γ1 = − 1
2π (2α3 + 9

4α2 + 11
12α1) , (97.52)

γ2 = − 1
2π (2α3 + 9

4α2 + 23
12α1) . (97.53)
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d) Note that eq. (97.26) is equivalent to µdαi/dµ = (bi/2π)α2
i , and that, for n = 3, we have

b3 = −7, b2 = −19
6 , and b1 = +41

6 . From eq. (88.47), we then have

C1(µ) =

[
α3(µ)

α3(MX)

]2/7 [ α2(µ)

α2(MX)

]27/38 [ α1(µ)

α1(MX)

]−11/82

C1(MX) , (97.54)

C2(µ) =

[
α3(µ)

α3(MX)

]2/7 [ α2(µ)

α2(MX)

]27/38 [ α1(µ)

α1(MX)

]−23/82

C2(MX) . (97.55)

We can apply these down to µ = MZ. At that point, SU(2) × U(1) is broken. (We should
apply electromagnetic renormalization below this scale, but this is a small effect that we will
ignore.) Also, the top quark no longer contributes to b3, which therefore changes from −7 to
−23

3 . Thus we have, for µ < MZ,

C1(µ) =

[
α3(µ)

α3(MZ)

]6/23 [α3(MZ)

α3(MX)

]2/7 [α2(MZ)

α2(MX)

]27/38 [α1(MZ)

α1(MX)

]−11/82

C1(MX) , (97.56)

C2(µ) =

[
α3(µ)

α3(MZ)

]6/23 [α3(MZ)

α3(MX)

]2/7 [α2(MZ)

α2(MX)

]27/38 [α1(MZ)

α1(MX)

]−23/82

C2(MX) . (97.57)

Now we can compute the numerical values, using α3(MZ) = 0.1187, α(MZ) = 1/127.91,
and (for self-consistency) the SU(5) prediction sin2 θW(MZ) = 0.207, as well as 5

3α1(MX) =
α2(MX) = α3(MX) = α5(MX) = 1/41.5. We also use eq. (97.30) with MX replaced by MZ and
b3 = −23

3 to compute α3(µ) at µ = 2GeV, with the result α3(2GeV) = 0.266. We get

C1(2GeV) = 2.82C1(MX) , (97.58)

C2(2GeV) = 2.98C2(MX) . (97.59)

Using C1(MX) = C2(MX) = 4πα5(MX)/M2
X

withMX = 7×1014 GeV (the one-loop prediction),
we find

C1(2GeV) = 1.7 × 10−30 GeV−2 , (97.60)

C2(2GeV) = 1.8 × 10−30 GeV−2 . (97.61)

For more details, see L. F. Abbott and M. B. Wise, Phys. Rev. D22, 2208 (1980).

97.4) a) From eq. (83.26), we see that PL(uN ) = PLN and PR(u†N ) = PRN . Then, from eqs. (83.20)
and (83.21), we see that (by definition) PLN transforms as (2, 1) under SU(2)L×SU(2)R while
PRN transforms as (1, 2).

b) After replacing the quark operators by the corresponding hadron operators, eq. (97.46) is
simply the translation into Dirac notation of eq. (97.45).

c) We have N =

(
p
n

)
, u = I +

i

2fπ

(
π0

√
2π+

√
2π− −π0

)
, and u† = I − i

2fπ

(
π0

√
2π+

√
2π− −π0

)
;

see eq. (94.29). Thus (uN )1 = p+ (i/2fπ)π
0p+ . . . and (u†N )1 = p− (i/2fπ)π

0p+ . . . . Thus
we have

Leff = A EC(C1PL + 2C2PR)p+ i(A/2fπ)π
0EC(C1PL − 2C2PR)p+ h.c. . (97.62)
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d) The contributing diagrams are

pp pe

pπ

pp p′p pe

pπ

The dot denotes a vertex from Leff ; the vertex with no dot in the second diagram is from
the usual pion-nucleon interaction, (gA/2fπ)∂µπ

0pγµγ5p, which yields a vertex factor of
(igA/2fπ)(−ipµπ)(γµγ5) = (gA/2fπ)/pπγ5. The vertex factor for the dot in the first dia-
gram is i2(A/2fπ)(C1PL − 2C2PR). The vertex factor for the dot in the second diagram
is iA(C1PL + 2C2PR). Thus we have

1st diagram = −(A/2fπ)ue(C1PL − 2C2PR)up , (97.63)

2nd diagram = +(AgA/2fπ)ue(C1PL + 2C2PR)
−/p ′p +mp

p′2p +m2
p

(/pπγ5)up . (97.64)

By momentum conservation p′p = pe, and the positron is on-shell, p2
e = −m2

e, which we neglect
compared to m2

p. Also, we can pull −/pe to the left, and use ūe/pe = −meue, which we can also
neglect. Then we use pπ = pp − pe to get

2nd diagram = +(AgA/2fπ)ue(C1PL + 2C2PR)
1

mp
(/pp − /pe)γ5up . (97.65)

Again we can pull /pe to the left and replace it with −me, which we can neglect. Then we use
/ppγ5up = −γ5/ppup = +γ5mpup, followed by PLγ5 = −PL and PRγ5 = +PR, to get

2nd diagram = −(AgA/2fπ)ue(C1PL − 2C2PR)up . (97.66)

From eqs. (97.63) and (97.66), we see that the scattering amplitude iT , given by the sum of
the diagrams, is

iT = − A(1+gA)

2fπ
ue(C1PL − 2C2PR)up . (97.67)

e) Summing over the positron spin and averaging over the proton spin, we have

〈|T |2〉 =
A2(1+gA)2

8f2
π

Tr(−/pp+mp)(C1PR − 2C2PL)(−/pe)(C1PL − 2C2PR)

=
A2(1+gA)2

8f2
π

Tr(−/pp+mp)(C1PR − 2C2PL)(C1PR − 2C2PL)(−/pe)

=
A2(1+gA)2

8f2
π

Tr(−/pp+mp)(C
2
1PR + 4C2

2PL)(−/pe)

=
A2(1+gA)2

8f2
π

(1
2C

2
1 + 2C2

2 )(−4pp ·pe) . (97.68)

Now we use −2pp·pe = (pp − pe)
2 − p2

p− p2
e = p2

π − p2
p− p2

e = −m2
π +m2

p +m2
e, and neglecting

me we have

〈|T |2〉 =
A2(1+gA)2

8f2
π

(m2
p −m2

π)(C
2
1 + 4C2

2 ) . (97.69)
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We now have Γ = (|pe|/8πm2
p)〈|T |2〉 with |pe| = (m2

p −m2
π)

1/2/2mp, and so

Γ =
A2(1+gA)2

128πf2
πm

3
p

(m2
p −m2

π)
2(C2

1 + 4C2
2 ) . (97.70)

Putting in numbers we get Γ = 1.8 × 10−63 GeV and τ = 1/Γ = 1.1 × 1031 yr. The naive
estimate Γ ∼ g4

5m
5
p/8πM

4
X

yields Γ ∼ 1.6 × 10−62 GeV for g5 ∼ 0.6 and MX = 7 × 1014 GeV,
too large by a factor of 10.

For more details see M. Claudson, M. B. Wise, and L. J. Hall, Nucl. Phys. B 195, 297
(1982); O. Kaymakcalan, L. Chong-Huah, and K. C. Wali, Phys. Rev. D 29, 1962 (1984).
For the lattice determination of A (called α in the papers just cited), see N. Tsutsui et al,
Phys. Rev. D70, 111501R (2004).

97.5) a) Gluons do not couple to ϕ. The SU(2) structure of both terms is the same, so the SU(2)
contributions to Zy and Zy′ are the same, and hence cancel in the ratio. The U(1) contribution
to Zy from gauge boson lines that connect to ϕ and to one fermion line is proportional to
Yϕ(Yℓ + Ye)g

2
1 , while the contribution to Zy′ is proportional to Yϕ(Yq + Yd)g

2
1 . However,

hypercharge conservation requires Yϕ+Yℓ+Ye = 0 and Yϕ+Yq+Yd = 0, so these contributions
are both proportional to −Y 2

ϕ g
2
1 , and hence cancel in the ratio.

b) The argument is the same as in problem 97.3, and the appropriate replacements are
(−1)(+1)e2 → (−1

2)(+1)g2
1 for Zy, and (−1)(+1)e2 → −C(3)g2

3 + (+1
6)(+1

3 )g2
1 for Zy′ , where

C(3) = 4
3 is the quadratic Casimir for the fundamental representation of SU(3).

c) We have y0 = ZyZ
−1/2
ℓ Z

−1/2
e Z

−1/2
ϕ y and y′0 = Zy′Z

−1/2
a Z

−1/2

d
Z

−1/2
ϕ y′. In Lorenz gauge,

Zℓ,q,e,d = 1 at one-loop order, and so r0 = (Zy′/Zy)r, with Zy′/Zy = 1 − 3
2π (4

3α3 − 5
9α1)ε

−1.

The anomalous dimension γ of r is the coefficient of ε−1, thus

γ = − 1
2π (4α3 − 5

3α1) . (97.71)

From eq. (88.47), and using b3 = −7 and b1 = +41
6 , we have

r(MZ) =

[
α3(MZ)

α3(MX)

]4/7 [α1(MZ)

α1(MX)

]10/41
r(MX) . (97.72)

Below MZ, we neglect the top quark, so that now b3 = −23
3 , and also neglect neglect electro-

magnetic renormalization. The result is

r(mb) =

[
α3(mb)

α3(MZ)

]12/23 [α3(MZ)

α3(MX)

]4/7 [α1(MZ)

α1(MX)

]10/41
r(MX) (97.73)

Now we can compute the numerical values, using α3(MZ) = 0.1187, α(MZ) = 1/127.91,
and (for self-consistency) the SU(5) prediction sin2 θW(MZ) = 0.207, as well as r(MX) = 1,
5
3α1(MX) = α2(MX) = α3(MX) = α5(MX) = 1/41.5. We also use eq. (97.30) with MX replaced
by MZ and b3 = −23

3 to compute α3(µ) at µ = mb = 4.3GeV, with the result α3(mb) = 0.213.
We get

r(mb) = 3.07 . (97.74)
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We therefore predict that mτ (mb) = mb(mb)/r(mb) = 1.4GeV. Since we are neglecting elec-
tromagnetic renormalization, we can compare this directly to the physical tau mass, 1.8GeV;
we are off by about 30%. This is close enough to encourage the notion that the basic frame-
work might be right, but far enough off that the specific details must be wrong.


