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1 ATTEMPTS AT RELATIVISTIC QUANTUM MECHANICS

1.1) % = 1 = eigenvalue-squared = 1 = eigenvalue = £1. o? = 1 = Tr3 = Tra?f3. Cyclic

property of the trace = Tra23 = TrajBaj. Then {a1,8} = 0 = Traifa; = —Tralf =
—Tr . Thus Tr 8 equals minus itself, and so must be zero. Tr a; = 0 follows from this analysis
by taking 6 — «a; and a1 — f3.

1.2) For notational simplicity, switch to a discrete notation:

/:/d?’:nl...d?’xn,

5my = 53(X -y).,
a; = a(xy1),
Y =P(X1,...,Xpst) . (1.40)
Using
[X,AB...C|=[X,AB...C+AX,B]...C+...+AB...[X,(C], (1.41)
which follows from writing out the terms on both sides, we have
lafay.al ...af] = [afay,alla}...af + al[alay, af]al ... af
+...+ ai . aiL_l[alay, all . (1.42)
We have
[alay, af] = allay, afls + [af, aflzay ,
= (1.43)
where [A, Bl = AB F BA. Using this and a,|0) = 0, we find
(alay)a]...af|0) =S (al ... al)iz0y0) . (1.44)
i=1
Similarly, we have
(alazayaw)aJ{ ...al |0y = Z (aJ{ ..al) i—a |0) (1.45)
ij=1 =y

for both bosons and fermions. (Extra minus signs with fermions cancel when we move a], and
aL into the positions formerly occupied by aj and a}.)

Now consider
/ & af () V2a(x)[8) = 3 / & / (V26,5)(al ... al)ise0) . (1.46)
=1

We have V24,; = V26,;. Then we can integrate by parts to put V7 onto 9, and then integrate
over x using the delta function to get

/d3ac a’ (x)V2a(x)|y) = Z/(ng)ai ...allo) . (1.47)
i=1
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Similarly,
[ & Ua xaGale) =3 [ Uil (1.48)
i=1
and .
[ & dy Vix -y al @alaGol) = 3 Ve -xle),  (149)
i,j=1

which yields the desired result.

1L.3) N =3, agai. Then [N, a}] = —i—a} and [N, a;] = —a; for both bosons and fermions. Thus,
using eq. (1.41), we find
[N,al .. .a;rnajl ceaj,] = (n— m)a;-'1 . a;-'najl ce O, (1.50)

EAayA ) m

Thus if the number of a’s equals the number of a!’s, the operator commutes with N.
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2 LORENTZ INVARIANCE
2.1) Start with eq. (2.3) and let A*, + 0#, + dw”,. We will always drop terms that are O(dw?) or
higher. Then we have
Gpo = Gu (0" + 0w ,)(6" 5 + dw” ;)
= gu (0" 6" 5 + 0¥ yow" 5 + 0w ,0” ;)
= Gpo + GO’ 5 + Guoow,
= gpo + 5&)po’ + 5wo’p 5 (239)
which implies dw,s + dws, = 0.

2.2) Let A’ =1+ éw, so that U(A’) = I + 556w, M. Then we have

U(A)"MI + 556wy MU (A) = T + 20w, U(A) T MPU(A) . (2.40)
Using A7 (1+0w)A = 1 + A~15wA, we also have
UM (1+6w)A) = I + 5= (A1 6wA) jo MP7 (2.41)

Now we use
(A_15WA)po = (A_l)p“‘swwayo
= A 0w\ 5
= dwu AN 5 (2.42)
Equating the right-hand sides of egs. (2.40) and (2.41) gives eq. (2.12), which, by the argument
in the text, then yields eq. (2.13).

2.3) We start with

U(l+éw) ™t = U(1—0w) = I — 55 6wpe M7, (2.43)
and so, for any operator A,
U(146w) AU (1+6w) = A + o5 dw,e[A, MP7] . (2.44)
In particular,
U(1+6w) "' M# U (146w) = MM + 0w e [MP, MP7] . (2.45)
Also,
(1+0w)* ,(14-0w)” o MP°

= MM 4 8w, MP 1 56 ;MM
= MW + bwopg™" MP + dwpeg” MM
= M™ — §wpe(g7F MP” — g” MH)
= MM — 180,5 (g7 M — g MM — gPEMOY 4 7% MHP) .
(2.46)
Equating the right-hand sides of egs. (2.45) and (2.46) and matching the coefficients of dw,,

gives
[MH MP?] = ih(g"* MPY — g MH° — gPF MY + g7 MHP) . (2.47)

Using g"” = g"* and M" = —M"* then yields eq. (2.16).
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2.4) From eq. (2.47), we have
(M, MIO] = ih(g% MO — gIOpi0 — i 00 4 00 ppidy
= ih(0—0—0+ (=1)MY) .
Using M =0, M = K?, and M%7 = £* J* eq.(2.48) becomes
(K%, K9] = —ihe* J&
Similarly,
[Mkl,MjO] — Zh(g()k‘M]l o glek‘O . gjk‘MOl + g()k‘Mlj)
= ih(0 — 0"'KF — 7R (—K') 4 0) .
Multiply by %eikl and use J! = %ﬂklel to get
[T, K9] = Lin(—e* KF 4 UK
= ihe"FKF
Similarly,
[Jl,Jz] — [M23,M31]
— ih(gP2M33 — BB B2N13 p g12 38
= ih(0 — M*' —0+0)
= ihJ?
and cyclic permutations of 123.
2.5) From eq. (2.44), we have
U(146w) " PPU (146w) = P* + 2=dw,e [PH, MP7] .
Also,

(1+éw) ,P? = PH + st , PP
= P' 4 dwgpg” PP
= PM 4 0we, (g7 PP — g™ P7)
= PH— %&upg(gC’“P” — gt PY).

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

Equating the right-hand sides of eqs. (2.53) and (2.54), and matching the coefficients of dw,

gives
[PH, M??] = ih(g°* PP — g"* P?) |

which is equivalent to eq. (2.18).

(2.55)
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2.6) Starting with eq. (2.55) we have

%ez’kl [PO, Mkl] — %sikl(ih)(glopk _ QOkPl)
=0, (2.56)
%eikz[Pj’Mkl] _ %meikz(m)(gszk . gkjpl)
— —ihelkpk (2.57)
[PO,MiO] — ih(QOOPi o gz’OPO)
= ih((—=1)P" —0), (2.58)
[P7, M™] = ih(g% P" — ¢¥ PY)
= ih(0 — 69 PY) . (2.59)

Using J* = %Eiklel, K'= M%® and H = P°, and doing a little rearranging, we get eq. (2.19).

2.7) Translations should add: T'(a1)T(a2) = T'(a; + a2). Then taking a; to be infinitesimal yields

[PH, P¥] = 0. (This is left as a further exercise.)

2.8) a) Using eq. (2.44), the left-hand side of eq. (2.26) becomes

U(1+0w) "t o(2)U (1+0w) = ¢(x) + o5 dwy [p(x), MH] . (2.60)
Using p(z+dz) = p(x) + dx,0"p(x), the right-hand side of eq. (2.26) becomes

o((1-dw)x) = p(x) — dwy 2zt 0" p(x)
= () + 30wy (z"0” — 2" 0")p(z) . (2.61)

We now get eq. (2.29) by matching the coefficients of dw,, in eqgs. (2.60) and (2.61).

b) The key point is that £/, a differential operator acting on functions of z, commutes with
MP?, an operator in Hilbert space that is inpedendent of z. Therefore, acting on [p, M*7]
with LM, we get

LK@, MPT] = [LM o, MP7] . (2.62)

On the LHS of eq. (2.62), we use [p, MP?] = LP7¢. On the RHS, we use LM ¢ = [p, M*].
The result is

L L7 = ([0, MM], MP7] . (2.63)
c¢) Terms cancel in pairs when all the commutators are expanded out.

d) Exchanging uv < po in eq. (2.63), we get
LP7LY o = [, MP], M
= —[[M*7, ], M"]. (2.64)
Subtracting eq. (2.64) from eq. (2.63), we have

(L1, L] = ([, M), MP7] + [[MP7, @], MM]
= —[[M", M"], ¢]
= [, [M"™, M"?]] (2.65)
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where the second equality follows from the Jacobi identity.

e) We begin with

(a0")(2P0°) = £ (g" + 2?8 )O

= ¢"Pal0° + xHalov 07 . (2.66)
Exchanging puv < po and subtracting, we get
[xH0", 2PO7] = ¢"Pat 7 — g7FaPO” . (2.67)
Antisymmetrizing on y < v, we find
[xH 0V — z" O, 2P = + g"Pxt07 — g7HaPO”
— gMPa? 0% + g7V xPor . (2.68)

Antisymmetrizing on p < ¢ and regrouping, we find

(2.69)
Using x#0" — zV0" = (i/h) LM, we get
[CH LP7] = ih(—g"P LH + 7R LPY + gHP LY — g7V LPH) . (2.70)

This is equivalent to eq. (2.47) for the M’s.
f) This follows immediately from egs. (2.47), (2.65), and (2.70), and [p, MP?] = LP7p. See

Weinberg I for a proof that there is no central charge.

2.9) a) Eq. (2.27) is equivalent to U(A)™10%¢(x)U(A) = 0Pp(A~1x), which is just the derivative
of U(A)"to(x)U(A) = ¢(A~'x). The infinitesimal form of the latter is [p, M*] = L.
Acting with 07, we get

[0, MP | =0 LM . (2.71)

Next we use

(07, L") = Lo, 20" — a0
([07,2"]0" — [97,2¥]0")
= B(grrgr — g or)
L (gPHeY  — gPYoR)OT
= (S¢")P-0" . (2.72)

St =St =S =S

Thus we have
[0P o, MM = LM 0P + (S§7)P 07 ¢ . (2.73)
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b) First, note that (S{")?, = 0. Next, define (L*)°, = LM§P.. Then, suppressing the
matrix indices, we have [£* S{°] = 0. Now define J* = L* + S{”. Then we have

070, M*] = (T")P-07¢ . (2.74)

Now we can repeat the analysis in problem 2.8 to conclude that the J’s have the same
commutation relations as the M’s. Since L’s and Sy’s commute, the S,’s by themselves
must have the same commutation relations. (Of course, this can be verified with a direct but
tedious calculation.)

c¢) Note that eq. (2.33) yields

0O 0 0 O

12 0 0 —1 0
SE=tl0 oo (2.75)

0O 0 0 O

Since the first and last row and column are all zeroes, we can focus on the middle rows and
columns, and write Si? = hoo, where g9 is a Pauli matrix, which has eigenvalues 4+1. For
any matrix like oo with eigenvalues 1, we have (02)?> = 1, and so, by Taylor expansion,
exp(—ifoy) = (cos ) — i(sin@)og. Thus we have

1 0 0 0
a1y |0 cosf —sinf 0
exp(—i05y7) = 0 sinf  cosf O (2.76)
0 0 0 1
d) Note that eq. (2.33) yields
0 0 0 +1
hl 0O 0 0 O
30 _ N
Sy = = 0 00 0 (2.77)
+1 0 0 O

Since the middle rows and columns are all zeroes, we can foucs on the first and last row and
column, and write S3° = hoy, where oy is a Pauli matrix, which has eigenvalues +1. For
any matrix like oy with eigenvalues 1, we have (¢1)? = 1, and so, by Taylor expansion,
exp(no1) = (coshn) + (sinhn)o;. Thus we have

coshn 0 0 sinhn
. 0 1 0 0
exp(—i0S30) = 0 0 1 0 (2.78)
sinhn 0 0 coshp
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3  CANONICAL QUANTIZATION OF SCALAR FIELDS

3.1) We begin with

al(k) = [ dy e [~itl(y) + wely)] (339
Since a(k) and a'(k) are time independent, we can take y° = 2. Then we have

(a(k), ()] = [ d% dy e (1w wiply)] + lwip(a). 1))
= /d?’az d¥y e hr—ikly (—i2w53(x—y) + i2w53(x—y))
(3.40)

Then [af(k),a' (k")] = 0 follows by hermitian conjugation. Also,

(k). al (&) = [ d dy =R (i), wiply)] + fwre(e), ~iTLy)])
_ /d3x 3y e~ tketik'y (—z’zwé?’(x—y) _ izwas(x_y))
_ 2w/d3:13 Ay e TRy 53 (x_y)
_ 2w/d —i(k—K)-x ,+i(k0—k'0)z
= 20(27)%* (k — K) . (3.41)

3.2) We begin by noting that

[a¥(k)a(k),a' (k1)...a" (k,)] = [af(k)a(k), al (ki)]al(ky) ... al (k)
+... Fd (k)d' (ko) ... [af (K)a(k), a (k)]
= (27)*2w8° (k — ky)a' (k)a' (k) . .. a¥ (ky)
+ o (2m)32w0% (k — Kp)al (kl) f(ko)...al(k).  (3.42)

Multiplying by w(k) and integrating over dk = d3k/(2m)22w, we find
[H,a'(ky)...a (k)] = (w1 + ... +wy)al (k1) ... al(k,) , (3.43)
and hence, since H|0) = 0,
Ha'(k;)...a'(k,)[0) = (w1 + ... +wp)al(ki)...a (k,)|0) . (3.44)

3.3) Define the four-dimensional Fourier transform

= /d4a; e~ () (3.45)
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and its inverse

o) = [ s ¢ o). (3.40)
Since ¢(z) is hermitian, ¢(k) obeys @' (k) = @(—k). We now have
UM / d*z e=* U(AN) " Lo(z)U(A)
_ / & e o(A )
= [ dy e " p(y)
= / dly eIV ()
= @(A k) . (3.47)

The third equality follows from setting x = Ay, and recalling that |det A| = 1. The fourth
follows from kAy = k*A,"y, = A, kty, = (A1), kty, = (A~1k)"y,. The fifth follows from
eq. (3.45) with k — A~'k. Next we note that the usual mode expansion is equivalent to

B(k) = 2w (k*+m?) [0(k")a(k) + O(—K*)al (~K)] . (3.48)

We can see this by plugging eq. (3.48) into eq. (3.46) and carrying out the integral over k°.
For positive k¥, we then have

210 (K> 4m?)a(k) = ¢(k) . (3.49)
Making an (orthochronous) Lorentz transformation, we have

o2md (k2 4+mAU (M) La(k)U(A) = U(A) L a(k)U(A)
= @A k)
= 215 (A~ k)2 4m?)a(A k)
= 2106 (k2 +m?)a(A71k) . (3.50)

The third equality follows from eq. (3.49) with k¥ — A~'k (note that (A='k)° is positive if
kC is positive since A is orthochronous), and the fourth from (A~'k)? = k2. Matching the
coefficients of the delta function on the LHS and final RHS of eq. (3.50) then yields

UM ta)UA) = a(A'k) (3.51)
with k¥ positive. The hermitian conjugate of eq. (3.51) is

UA) Lo (K)U(A) = af(A7'K) . (3.52)
Finally, we have

U(N)a' (k). al(k,)]0) = U(A)a! (kn)UN) ... U(N)a' (k,)U(A) T TU(A)[0)
= a'(Aky)...a'(Ak,)|0) , (3.53)

where we used eq. (3.52) and U(A)|0) = |0).
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3.4) a) T(6a) = I —ida, P* and T'(6a)~t = I +ida, P*, so
T(6a)" ()T (0a) = p(x) — iday[p(x), P!] . (3.54)
Also, by Taylor expansion,
p(r —a) = o(x) = da,0"p(x) . (3.55)
Matching the coefficients of da,, yields
[o(a), P!] = 0" ¢(z) . (3.56)
b) Setting 4 = 0 and recalling that P’ = H and 8° = —0y = 0/0t, we get ip = [p, H].
¢) H =1 [ d%[II?+ (V)2 +m?p?. Since H is time independent, we can take y° = 2°. Then
(pw), 1] = § [ ¥y fp(a). T2 ()
= 3 [ @ ([olw) T)TG) + 1) [o(x), TH)])
= 3 [ @ (i6° e~ 9)T) + T)ie* (x — y)
=i / d’y 6% (x — y)T(y)
= ill(z) . (3.57)
Combining with our result from part (b), we find IT = . Next,
(), H] = 5 / &y [(2), Vie(y) Vip(y) + m?e? (y)]
=3 / dy (V3 [I(2), e(y)) Vo (y) + Vie(y) Vi T(2), o (y)]
+m?[[(z), W)]p(y) +m*e(y) (). ¢ (y)])
= —i / dy (Vi5(x = y)Viely) + m*5* (x = y)e(y))
= —i/d‘"’y (=% (x = ¥) V() +m?6* (x = y)e(y))
= —i(=V* 4+ m?)p(z) . (3.58)

The Heisenberg equation for II, [II, H] = 411, then yields IT = —(—V? 4 m?)¢. Since II = ¢,
this is equivalent to ¢ = —(—V? + m?)p, which is the Klein-Gordon equation.

d) We have

(p@).P) = — [ d'ylp(x). () Te(y)

_ —z’/d?’y 53 (x — y)Vo(y)
Ve, (3.59)
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which agrees with eq. (3.56).
e) We have

P = —/dga; I(z)Ve(x)
= — /c?l/f dk d3x (—iw a(k)eikx + w aT(k)e_ikx) (—l—ik' a(k')eik,x — ik’ aT(k')e_ik/x)
- _(27r)3/[17g 0[5 (0 — k) (k) (af (k)a(k)e " + al)al (k)0
+ 8% (k + K) (+wk') (a(k)a(k )e @ 1 g% (k)a* (K)e e+t
=} [ @ [0l (9a(1) + a(k)al () + ala(-K)e 2" + al ()al (~K)e "], (3.60)
Note that the third term, k a(k)a(—k)e™***, is odd under k < —k, and hence vanishes when
integrated over dk; the same is true of its hermitian conjugate (the fourth term). Also, in the

second term, we can write aa’ = afa + ~constant; the constant term, after being multiplied by
k, also vanishes when integrated over dk. We therefore get

P- /812 ka (K)a(k) , (3.61)

which is just what we expect.

3.5) a) S = [d'c (+0%p — m2p)dp! + h.c. after integrating by parts; the coefficients of both §¢p
and o' must vanish.
b) I =0L/0p = of, TTT = 0L/0pT = p, H = p + T — L =TI + Vel Vi +m2pTp.
¢) Following the text, we get a(k) = i [ d*z e~ 56 ©(x). Then we note that exchanging
¢ « ¢l is equivalent to a(k) « b(k), and so b(k) =i [ d* e~y of (z).

d) This is straightforward but tedious; the answer is the expected one: [a,a] = [b,b] = [a, bl] =
[aTv b] =0, [av aT] = [b7 bT] ~ 0.

e) Again, straightforward but tedious, just like the derivation in the text; the final result is
H= / dhew [al ()a(k) + b1 (k)b(k)] + (260 — )V . (3.62)

with & = 3(27) 73 [ d% w; each set of oscillators (a and b) contributes &V to the zero-point
energy.
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4  THE SPIN-STATISTICS THEOREM

4.1) We want to evaluate the Lorentz-invariant integral [ c?fceik(x_xl), where (z — 2')?2 = 72 > 0.

There is then a frame where t’ = ¢, and we work in that frame. Then we have

-~ / d?’k’ 1 /
ik(z—x') _ ik-(x—x")
/ die / 2m)32w €

2
— 27 / dk k d cos 0 ezkr cos 0
w -1

2(2
L

)3
/ dk k? 28111 k;r)
o0 k Sln(k‘r)
= dk ———==+
2 /0 (k% 4+ m?2)1/2
1

= 12 mKy(mr) , (4.16)

where K;(z) is a modified Bessel function. As z — 0, zKj(z) — 1, and so as m — 0, the
right-hand side of eq. (4.16) becomes 1/472r2,
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5 THE LSZ REDUCTION FORMULA

5.1) From our results in solution 3.5¢, and taking hermitian conjugates as well, we have

bi(k) = —i / & et ) o) (5.28)

Following the analysis in the text, this yields the following replacements inside the time-
ordered product:

av(+00) i [ dlo} M (=0f + m?)p(ah)

bar(ho0) — i [ dlah M- + )l (a))

aJ{(—oo) — i/d4x1 ethe (92 4+ m?) ol (21) ,

bh(—o0) — i / s 202 (Z 02 4 mP)p(as) . (5.29)
We see that outgoing a particles and incoming b particles result in a ¢, and that outgoing b
particles and incoming a particles result in a f. Outgoing particles get a phase factor with

a plus sign in the exponent, and incoming particles get a phase factor with a minus sign in
the exponent.
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6  PATH INTEGRALS IN QUANTUM MECHANICS

6.1) a) We wish to perform the integral
m_H/%’WwW” (6.24)

where a; = gj41 — ¢j = ¢;0t and ¢ = i6t/m. The result is
N e—a5/2c
o (2me)l/?

(N+1)/2
N , 19
= (27Ti5t) exp (2(515 E 2mq]). (6.25)

J

In =

<.
Il

Therefore Dqg = CH " dg; with C' = (m/2midt)N+D/2,
b) We now have

m \V+1)/2 N
27Ti5t>

Wﬂmw=<
k=1

1 \(V+n/2 N N (a0 g2

k=1 Jj=0

The integral over q; is
1/2
/ dgy &m0 2eeama0? 2 = (L(ome)) ! el e (6.27)

The integral over g is now

/dqg e~ (3=a2)*/2¢,—(a2—40)% /4e _ (%(2#0))1/2 e (a3—a0)%/6¢c (6.28)
In general, the integral over qy is
1/2
/qu e—(avy1—an)?/2¢,—(an—q0)?/2Ne _ (NL(QFC)) / e—(anv+1—90)%/2(N+1)c (6.29)
Therefore we have
N )2 1/2 N/2
H dqy, exp( Z qﬁl ) = (Nil) / (27rc) / e~ (av+140)*/2(N+1)e , (6.30)
k=1 j=0
and so

1 1/2 )
<q”,t"]q',t'> _ ( ) e~ (aN+1=90)"/2(N+1)c
2me(N+1)

m 1/2 im(a" —a')2 1"_yqt
:<m> eimld” )2t =) (6.31)
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where we used ¢ = idt/m and (N+1)dt = t"—t' to get the second line. The exponent must be
dimensionless, and since (¢”|¢') = d(¢” — ¢’), the prefactor must have dimensions of inverse
length; therefore

TRV A N m 1/2 im(q" —q')? /2R (" —t')
(¢ t"q' ') = s —)) © . (6.32)

c) Let T =" —t'; we have H = ﬁP% and so

<q”,t"]q',t'> _ (q//’e—iHT’q/>
— oo 1" —iHT /
= dp{q"le”"" " Ip){pla’)

00 .
= / dp (" |p)(plq) e~ @*/2m)T
+o0 erd’ o—ivd’
_ dp —— e—z(p /2m)T
/—oo b V2T 2T
= /+OO dp eiP(@"—a")=i(T/m)p? /2

Lo 2T

m 1/2 : 1" N\2
— im(q"”—q")* /2T
(27riT> ¢ ’ (6.33)

which agrees (as it should!) with eq. (6.31).
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7 THE PATH INTEGRAL FOR THE HARMONIC OSCILLATOR

7.1) Setting ¢’ = 0 for notational convenience, we have

G(t) =

+oo dF e—iEt
/_Oo 2 — B2 +w? — e

_ [T dE —e "t jor 1o
_/—oo (B — (w—ie)) (B + (w—ie)) (7.19)

Think of E as a complex variable. If ¢ > 0, we can add to eq.(7.19) an integral along an
arc at infinity in the lower half complex FE-plane, since e *F! vanishes on this arc. This
produces a closed contour that encircles the pole at £ = w — ie in a clockwise direction.
The residue of this pole is (—e ““=%)/21) /(2(w—i€)) — —e ™! /47w as € — 0. By the
residue theorem, the value of the integral is —2m¢ times this residue. Similarly, if ¢ < 0,
we can add an arc at infinity in the upper-half plane. This produces a closed contour that
encircles the pole at £ = —(w—ie) in a counterclockwise direction. The residue of this pole is
(—et@W=1 )27} /(—2(w—i€)) — ! /4mw as € — 0. By the residue theorem, the value of the
integral is 4274 times this residue. Combining these two cases, we have

G(t) = ge ™Il (7.20)

7.2) We wish to show that G(t), as given by eq. (7.20), obeys G + w?G = §(t). We first note that
(d/dt)|t| = signt and (d/dt)signt = 25(t). We then have

G(t) = %e‘i“"ﬂ sign(t) , (7.21)
and
G(t) = —%iwe‘i“m sign?(t) 4+ e M5t
= —Liwe=™I 4 5(t)
= —w?G(t) + () . (7.22)
7.3) a) Q =i[H,Q] =i[1P?,Q] = P and P = i[H, P] = i[1w?Q?, P] = —w?Q. The solution is
Q(t) = Qeoswt + L Psinwt
P(t) = Pcoswt —w@sinwt . (7.23)

b) Q = al +a) and P =i aT — a); this is a standard result in quantum mechanics
\/_
(with i =m = 1). Plugging these 1nto eq. (7.23) and simplifying, we find

(aTe+Mt+ae zwt) ’

(afeti! —aemt) . (7.24)

E\H
S

||
~.
[E
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c) Assume t; > to. Then we have

(0ITQ(t1)Q(t2)]0) = (0]Q(t1)Q(t2)]0)

= L 0l(al et ae™ N ) (aleH2 1 aemit2) )

= sLe Wheth (0]aql|0)

= jLemwlti=ta) (7.25)
Of course, for ¢t; < ta, we have (0|TQ(t1)Q(t2)|0) = (0|Q(t2)Q(t1)[0) = %e_i“(”_“). Com-
paring with eq. (7.20), we see that (0|TQ(t1)Q(t2)[0) = G (t1 — t2).

We can similarly analyze the case of four @’s; for t1 > to > t3 > t4, we have

(0ITQ(t1)Q(t2)Q(t3)Q(t4)]0)

_ 1 —zw (t1—ta) <O‘ ( T —Hwtz + ae zwtg)( T +iwt3 +ae—iwt3) T’0>

@)z
— (25)) e~ wti—t)[emiwta=t2) (0| ga aat|0) + e 2 78) (0|aaalal|0)]
— e it —ta) [giwlts —t2) |y ge—iw(t2—ts))
— e et —t2) gmi(ts—ta) | omiw(ti—ts) it —ta) | g=iw(ta—ta) mit(t2—t3))
= F[G(t1—t2)G(t3—ts) + G(t1—1t3)G (ta—ts) + G(t1—t4) G (ta—t3)] - (7.26)

Other time-orderings follow by relabeling.
7.4) Eq. (7.10) reads

dE_Fnfn ) o)

(0[0)5 = eXp[2 /_oo o B2+ w?

In general, if A = exp(iB), then |A|* = exp(—21Im B). Since f(¢) is real, its Fourier transform
f(E) obeys f*(E) = f(—E); therefore f(E)f(—E) = |f(E)[?, which is purely real. We then
use Im 1/(z—ie) = ¢/(x?+€2); as € — 0, this becomes md(x). Thus we have

00) = exp[ -5 [~ ap|F )P o B+ (7.28)
Using 0(—E2+w?) = §(E?—w?) = L[§(E—w) 4 6(E4w)], and |f(E)|? = | f(—E)|?, we get

(010)4[? = exp [~ 5| Fw)?] - (7.29)
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8 THE PATH INTEGRAL FOR FREE FIELD THEORY

8.1) (=02 + m?)e*® = (k* + m?)e**®, and (k? + m?)/(k* + m? —ie) — 1 as € — 0. The remaining
integral yields 6*(z—2').

8.2) The first line of eq. (8.13) follows immediately from the solution to problem 7.1. To get the
second term on the second line of eq. (8.13) into the form shown, we replace the integration
variable k with —k.

8.3) Set 2’ = 0 for notational convenience. Then (—V? 4+ m?)et*® = (k? 4 m?)etiks = ,2etike,
Also, do[if(t)e™ "] = [i6(t) + wb(t)]e™ ™" = id(t) + wh(t)e™ ™", and so (95 + w?)[i0(t)e "] =
i6(t) + wd(t)e ™t = id(t) + wd(t). Similarly, (92 + w?)[i0(—t)et™!] = —id(t) + wd(t). Doing
the integral over k, we find

(~0° +m?)[if(t / dk €] = 4ib(£)O(r) + $6(1)8 (x)
(—0? +m? / dk e *7] = —id(1)C(r) + 16()5° (x) | (8.20)
where C(r) is defined in eq. (4.12). Adding, we get
(~0° +m?)[if(t / dk ¢ 4 i (— / di %) = 6(6)8° (x) (8.21)
8.4) For t; > t9, we have
(O[Tl )il2)|0) = [ by (0] (alk)e™ + af (r)e~2)
x (a(ko)e™ ™ 4 af (kp)e 272 |0)
_ / dky dks ¢ F121=4272) (014 (k; )a (ky)|0)
= /&7@1 &7@2 eik121—kow2) (277)3 Qw9 (53(k1 — ko)
_ /Eﬁcl By ik —kam2) 63 (1, key)
= [y et (8:22)

Obviously, if to > t1, we swap 1 and 2. This yields the last line of eq. (8.15).

8.5) For 2 > 9°, we must close the contour in the lower-half k" plane. The result will vanish if
both poles are above the real k? axis, so this is the prescription that yields Aet(z — y). We
can implement this prescription via

A d% eik(m—y)
ret(T ~9) = / 2m)% —(K0—ie)2 + K2 + m?
A% zk (z—y)

- (2m)* k2 + m? + 2ik0¢

B A% ezk(x—y) 293
N / (2m)% k2 + m? + isign(k0)e ’ (8:23)
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where the last line follows because only the sign of the infinitesimal term matters (and not
its magnitude). Similarly,

A d4% eik(m—y) -
adv(7 = y) = / (2m)4 k2 + m? — isign(k0)e (8:24)
8.6) See the solution to problem 7.4 for more details. We use
r + 1€
x—ie a?+e p?+4 e
1
=P - +imd(x) , (8.25)
where P denotes the principal part. We note that J(k)J(—k) = |J(k)|? is real, and so
L[ d% 5 1
= - k)P ———
Re Wo(J) 2 / (2m)4 |7 (k)] k2 +m?2’
- %/Zﬁc TR . (8.26)
8.7) This is a straightforward generalization; the final result is
Zo(JtJ) = exp {z / i d'y T (@) A — x’)J(x’)] . (8.27)
The generalization of eq. (8.14) is
) 1 9
0/T o (yn) .0y = = - L Zo(TT T : 8.28
O ()t ) 10 = 5 s 0 DD, (8.28)
This yields
<0|T90(<E1)90(!E2)|0> =0,
(OITe! (1) (42)10) = 0,
(OTp(a1)e! (42)[0) = FA(z1 —y2) - (8.29)

From the mode expansions, ¢ ~ a+b' and ¢! ~ a' +b, and the fact that we can get a nonzero
result for (0]...|0) only if ... contains aa’ or bbf, we see that (0]pp|0) and (0]¢TpT|0) must
vanish, and that (0|¢e'|0) is the same as in the case of a real field. The generalization of
eq. (8.17) is then

(0] Tep(x1). .. (p(:L'n)(,DT(yl) . yn )|0) = Z Alw1=yi,) - Alen—yi,) (8.30)

where the sum is over permutations of the y;’s. The result vanishes if the number of ¢’s does
not equal the number of ¢f’s.
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8.8) This is a straightforward generalization of the result for a harmonic oscillator. If we put the
system in a box (with, say, periodic boundary conditions), then the momentum is discrete,
and we can write ¢(x) = > Pke’**, and similarly for TI(x); we take ¢t = 0. Then

H = % Z[ﬁkﬁ—k + (k2+m2)<,5k@_k} , (831)
k

which is just a sum of individual oscillators labeled by k, with wi = (k>4+m?)'/2. Thus the
ground-state wave function is just a product of the individual wave functions,

1 o Hexp(—%wkﬂkﬂ_k) . (8.32)
k

We can replace the product with a sum in the exponent; in the limit of infinite box size,
Sk — [ d%/(2m)3, which yields eq (8.19).



Mark Srednicki Quantum Field Theory: Problem Solutions 22

9 THE PATH INTEGRAL FOR INTERACTING FIELD THEORY

9.1) See the figures in the text.

9.2) a) The vertex joins four line segments. The vertex factor is (4!)(i)(—A/24) = —i.

b) E=0,V =1: C):D

S =23

e O @

S =2 x4!

S=2
E=2V=1 g 2
S =22

E=2V=2

,84*@*.@@.

S =2x3l =
E=4V =1 :><
S =4!
S =24 S =2x3l

There are no diagrams with F odd, since it is impossible to draw such a diagram when the
vertices connect an even number of lines.

c¢) Since there is no diagram with a single source, the VEV of ¢ vanishes. (For another
explanation, see section 23.)
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9.3) a) The vertex joins four line segments, two with arrows pointing towards the vertex, and two
with arrows pointing away from the vertex; this is because the interaction term involves two
¢’s and two l’s. The vertex factor is (2!)(2!)(i)(—\/4) = —iA.

mE:szL<j(>

S =2
ermr 000 OB

S =2 S =23
E=2V=0 @ —@

S=1
E=2V=1 gz

S=1

E=2V=2

E=4V =1 :><:

S =22

S =2 S=2 S=2 S=2
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9.4) a) exp W (g, J) is the path integral for 3 theory in d = 0 spacetime dimensions, but without
the prefactor of i in the exponent. (This means we are working in d = 0 euclidean space-
time dimensions; see section 29.) In the Feynman-diagram expansion, each propagator is
(27?)_1/2 f:fs dr e~ /222 = 1, each vertex is g, and each source is J. Only the symmetry
factor of each diagram is nontrivial. The sum rule Cy,g = > ; S% follows immediately.

b) We expand e97°/6+Jz i powers of g out to ¢g*, and in powers of J out to J°; the J® term
is needed for part (d). Then, odd powers of z integrate to zero, and even powers 2" to
(2n—1)!1. The result is

Wig,J) _
MOD =14 (319% + 59" + (9 + R+ 5+ R+ 3519

n (%94— %93)J3 n (% n 292 i 29520126594)‘]4

+ (159 + 115329°) J°. (9.42)
Taking the logarithm, we find

W(g,J) = (519" + 59" + (39 + 36°)J + (3 + 39° + Bg") ]
+ (G + 390 + (39" + 9" + 30" (9-43)

It is straightforward to check that the symmetry factors given for the diagrams satisfy the
sum rule.

c¢) This follows immediately from the discussion of tadpole cancellation in the text.
d) From eq. (9.43), we have

ZW(g,J+Y)| = (ha+ 56 + (1+ g%+ Zg")Y + (3g+26°)V?

+ (32 +4gh)Y3 4 207 (9.44)

J=0

Setting Y = a1g + azg® and setting the result equal to zero, we get
0=(3+a)g+ (2 +ar+ial+a3)g” +O(g°). (9.45)
The solution is a1 = —% and ag = —i. Setting Y = —%g — %93, we get
W(g, J+Y) = (9" + 9" + (3 + 19° + 291
+ (69 + 13977 + (39" + 159", (9.46)

where we have dropped the J® term, since it receives a contribution from the uncomputed
JO terms in W (g, J). It is straightforward to check that the symmetry factors given for the
diagrams without tadpoles satisfy the sum rule.
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9.5) a) Follows implicitly from the analysis in section 3, but can be shown directly by writing the
time derivatives as commutators with Hy, and working them out.

b) Follows immediately from egs. (9.33) and (9.34). U(t) is unitary because it is the product
of two manifestly unitary operators.

C) Z'%U(t) — eiHOt(—HO—I—H)e_th — eiHotHle—th — (eiHotHle—iHot)(ez’Hote—th) — H[(t)U(t),
and it is obvious that U(0) = 1.

d) Consider, e.g., H1 o ¢(x,0)". Then H;(t) oc etotp(x,0) e~ 0!, We can insert a factor of
1 = e~ Hotgiflol hetween each pair of fields, and then use eq. (9.34) to get H;(t) o< ¢r(x,t)".
e) Differentiating with respect to ¢ inside the time-ordering symbol brings down a factor of
—tH (t). Since t is the latest time, this factor of —iH/(t) is placed at the far left, QED. For

t < 0, we must use anti time ordering, where operators at later times are placed to the right
of those at earlier times.

f) Hermitian conjugation of a time-ordered product gives one that is anti time ordered. Then
the anti-time-ordered terms in UT(¢;) cancel those in U(t,), leaving eq. (9.35). If t; > to, then
we must use anti time ordering.

g) Ul(ta,t1) = Ulta,t1) follows immediately from the definition of U(ty,ts). Ul(ts,t1) =
U(ts,t2)U(to,t1) is obvious from eq. (9.35) if t3 > to > ¢1. Otherwise, cancellations between
time-ordered and anti-time-ordered terms still yield this result.

h) Follows immediately from ¢(x) = UT(t)p;(z)U(t) and Ul(tz,t1) = U(t)UT(t1).
i) Follows immediately from part (g).

j) U(=00,0)]0) = eill=i)Ho(=0)g=iH(=0)|0) " and e~"1*|0) = |0) for any ¢. Then we write
|0) = >, [n)(n]0), where the |n)’s are the eigenstates of Hy. With € > 0, only the ground
state |()) survives. A similar analysis gives (0|UT(c0,0) = (0]0)(f).

k) Follows immediately from the results of parts (h), (i), and (j).
1) The U’s in part (k), if placed in time order, multiply out to U (oo, —00).
m) Follows immediately from setting every ¢(x) = 1 in eq. (9.39), and using (0|0) = (0|0) = 1.
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10 SCATTERING AMPLITUDES AND THE FEYNMAN RULES

10.1) We expand the exponential to second order in Hy, and then compute the correlation function
using free-field theory. The second-order term in the numerator of eq. (9.41) is then

Lig/6? [ dyd'z (T p(an)plas)elwa)* ()6 (2)10) (10.17)

(where we drop the I subscript and the slash through the zero for notational convenience).
Here we have set 2} = x3 and zf, = x4 to facilitate counting. It is also convenient to write
©3(y) = o(y1)p(y2)e(ys) with y; = y, and similarly for ¢3(2), again to facilitate keeping
track of terms. We have a total of 10 fields now, and there are (10—1)!! = 945 terms on the
right-hand side of Wick’s theorem. Terms where the x;’s are all paired with each other are
canceled by the expansion of the denominator in eq. (9.41). We also drop tadpoles, as per the
discussion in section 9, and terms that are not fully connected, as per the discussion in section
10. The terms remaining pair each z; with a y; or z;, and one y; with one z;. Given a pairing
of this type, there are 3! permutations of the y;’s that yield the same result (after setting
y; = y), and 3! permutations of the z;’s that yield the same result (after setting z; = z). Also,
two pairings that are identical except for the exchange of y and z yield the same result after
these variables are integrated. Pairings differ by whether x; is paired with the same dummy
variable (y or z) as xq, or 3, or x4. Accounting for all these factors yields eq. (10.9).

10.2) In problem 9.3, we drew “charge” arrows that pointed away from J’s and towards J P's. After
taking functional derivatives with respect to J or JT, these arrows will point towards external
¢’s (and therefore away from the attached vertex) and away from external !’s (and therefore
towards the attached vertex). We saw in problem 5.1 that outgoing a and incoming b particles
result in a ¢, and that incoming a and outgoing b particles result in a . Therefore, incoming
a and outgoing b particles correspond to external lines with charge arrows pointed towards
the vertex, and outgoing a and incoming b particles correspond to external lines with charge
arrows pointed away from the vertex. On the other hand, incoming particles have momentum
arrows that point towards the vertex, and outgoing particles have momentum arrows that
point away from the vertex. Thus, we can use charge arrows for momenta if we include
minus signs with the momenta for incoming and outgoing b particles. Therefore, we have the
following Feynman rules (for tree-level processes):

1. For each incoming a particle, draw a line with an arrow pointed towards the vertex, and
label it with the a particle’s four-momentum, k;.

2. For each outgoing a particle, draw a line with an arrow pointed away from the vertex,
and label it with the a particle’s four-momentum, ;.

3. For each incoming b particle, draw a line with an arrow pointed away from the vertex,
and label it with minus the b particle’s four-momentum, —k;.

4. For each outgoing b particle, draw a line with an arrow pointed towards the vertex, and
label it with minus the b particle’s four-momentum, —k;.

5. The only allowed vertex joins four lines, two with arrows pointing towards it and two
with arrows pointing away from it. Using this vertex, join up all the external lines,
including extra internal lines as needed. In this way, draw all possible diagrams that are
topologically inequivalent.
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6. Assign each internal line its own four-momentum. Think of the four-momenta as flowing
along the arrows, and conserve four-momentum at each vertex. For a tree diagram, this
fixes the momenta on all the internal lines.

7. The value of a diagram consists of the following factors:
for each incoming or outgoing particle, 1;
for each vertex, —iA;
for each internal line, —i/(k? + m? — ie).

8. The value of i7 (at tree level) is given by a sum over the values of the contributing
diagrams.

10.3) The vertex joins one dashed and two solid lines, with one arrow pointing towards the vertex
and one away. The vertex factor is ig.

10.4) Using the method of problem 10.1, the vertex factor for three lines with arrows all pointing
towards the vertex can be determined from the free-field theory matrix element

(0] 00, p|k1kaks) = 02-03(0|¢(x1)p(z2)p(w3)|k1k2k3) ity

= 0y-03 [e“klxﬁk?xﬁ]%m) + 5 perms of k‘i’s}

T1=T2=T3=T

= i%(2ky k3 + 2k ky + 2ky -ky)e'F1 TR tRe)e (10.18)

The vertex factor is then %z’g times the coefficient of the plane-wave factor on the right-hand
side of eq. (10.18). Since k1 +ko+ k3 = 0, we have (ky + ka +k3)? = 0, and therefore the factor
in parentheses on the the right-hand side of eq. (10.18) can be rewritten as —(k? + k3 + k3).
The overall vertex factor, for three lines with arrows all pointing towards the vertex, is then
Sig(k? + k3 + k3).

10.5) We take ¢ — ¢ + Ap?. The lagrangian becomes
L = —30"(p+20")0u(p+2p%) — §mP(p+2¢%)?

= —%8“@8“90 — %m2<,02 — 20p0" 0, — AmP® — 202?000, — %A2m2<,04 . (10.19)

Using our results from problem 10.4, the three-point vertex factor is

Vi = (=2i\)(k] + k3 + k3) — 6iAm?
= (—=2iN)[(k] + m?) + (k3 + m?) + (k3 +m?)], (10.20)
and the four-point vertex factor is
Vi = (=2i0?)(2)(k} + k3 + k3 + k) — 12iAm?

= (—4i\D)[(kF +m?) + . 4 (B2 +m?)] + 4iX*m? (10.21)

where all momentum arrows point towards the vertex. The factor of 2! in the first term in
V4 comes from matching external momenta with the two ¢’s without derivatives.

Now consider ¢ — @¢ scattering. We have the diagrams of fig. 10.2, plus a four-point
vertex. In these diagrams, each three-point vertex connects two on-shell external lines with
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/‘312 = —m?, and one internal line. In the s-channel diagram, the internal line has kf = —s;
thus each vertex in this diagram has the value V3 = (—2i)\)(—s + m?). For the ¢- and u-
channel diagrams, s is replaced by ¢ or u. In the four-point diagram, all lines are external
and on-shell, and so the value of the four-point vertex is V4 = 4iA>m?. We therefore have

,1 1
i —s+m?

= 4i)N*[(—s +m?) + (=t + m?) + (—u +m?) + m?]

= 4iX*(—s —t — u + 4m?)

=0. (10.22)

iT = [(—2i)\)(—s 4+ m?)] + (5 = t) + (s — u) + 4iX*m?
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11 CROSS SECTIONS AND DECAY RATES

11.1) a) The vertex factor is 2ig, and so the tree-level amplitude for A — BB is simply 7 = 2g. We
use eqs. (11.48) and (11.49) with n’ = 2, Ey = m,, and S = 2. We also use eq. (11.30) with

s =m? and |k{| given by eq. (11.3) with my/ = my = my; this yields |Ki| = §(m? —4m?2)Y/2.
The integral over df) simply yields 47. So we find
9 A2 |2
r=_7 0—7? (11.60)
8T 4 m4

at tree level.

b) Everything is the same, except that now the vertex factor is ig rather than 2ig, and the
outgoing particles are not identical (one is an a particle and one is a b particle), so we have
S =1 rather than 2. Therefore

2 4m2 \!/?
r=-92 [1-—x (11.61)
16mmy, m2

at tree level.

11.2) a) Let the incoming and outgoing electron four-momenta be p and p’, and the incoming and
outgoing photon four-momenta be k and &’. In the FT frame, we have

P = (m707070) )
k= (w,0,0,w),
K = (W', w'sinf,0,w’ cosh) , (11.62)

where 6 = 0pr; p’ is fixed by momentum conservation to be p’ = p+ k — k’. We have

s =—(p+k)?
=(mtw?-w
= m? + 2mw, (11.63)

u=—(p—K)

(m —w')? —w

=m? - 2muw’ . (11.64)

2

12

b) We get a relation among 6, w, and W' by using p'?> = —m?; this yields

—m? = (p+k—k)>?
=p? + K2+ K2+ 2k — 2p-k — 2k-K
= —m?+0+0— 2mw + 2mw’ — 2ww'(cos 6 — 1) . (11.65)

We thus find 1 .
1—cosf = m(— — —) . (11.66)

woow
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c) We use egs. (11.63) and (11.64) in eq. (11.50) to get

2

IT|? = 32n%a? m+ mu; . + = mg . - 2m® + muj — mw’] . (11.67)
w w ww
Organizing terms by powers of m, we find
[ 1 1 2 1 1 !
T2 = 320202 m2<—2 +—5 — —) +2m(— - —) + 24 ﬁ}
L w W’ ww’ w W W w
r /
= 327202 (1 — cos )% — 2(1 — cosf) + Yy ﬂ]
i Www
r /
= 321%a? | —sin? 0 + i/ + ﬂ] . (11.68)
I Wwoow
Now we use eq. (11.34),
d 1
J T2 (11.69)

dt — 64ms|ky|2,,

From eq. (11.9), we have s|ki|2,, = m?w?. We can now get do/dQpr from do/dt by computing
dt with s (and hence w) held fixed. Solving eq. (11.66) for w’ yields

, mw
_ 11.70
“ m +w(l —cosh)’ ( )
and so
2
dw' = it d cos 6
“ [m + w(1 — cosh)]? o8
2
=Y dcost. (11.71)
m

We have t = 2m? — s — u = 2m(w’ — w). Therefore,

dt = 2mdw’
= 2w'% dcos b
= (W?/7) dQpr . (11.72)

Thus we have

do W do
dQ e T dt
1 w/2

Combining this with eq. (11.68), we get eq. (11.51).
11.3) a) This follows immediately from eq. (11.53) and the definition of dLIPS,,(k), eq. (11.23).

b) The left-hand side is a tensor with two vector indices, and the only-four vector it can
depend on is k. The only tensors with two vector indices that can be built out of a single
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four-vector are g" and k*kY, so the right-hand side must be a linear combination of these,
with scalar coefficients. By dimensional analysis, A and B are dimensionless. The only scalar
quantity that A and B could depend on is k> = —m?, but since this is dimensionful, A and
B must be pure numbers.

¢) For my/ = my = 0, we have [kj| = 3./s. We then use eq. (11.30); integrating over df,
yields a factor of 4.

d) Contracting eq. (11.55) with g"”, we get
/(kg-kg) LIPS, (k) = (44 + B)K? . (11.74)
Contracting eq. (11.55) with k*k”, we get
/(k.kg)(k-kg) LIPSy (k) = (A + B)(k)? . (11.75)

The delta function in dLIPSy (k) enforces &} +k% = k. We also have k/? = —m/? = 0. Therefore
k-k) = (K + kb)) -k} = k) -k, and similarly k-k) = k}-k). Also, k% = (ki + k))? = 2k} -K).
Therefore ki-kh = 1k? and (k-k})(k-ky) = %(k*)?. Using these in eqs. (11.74) and (11.75), and
then using eq. (11.56), we find 44 + B = 1/16m and A + B = 1/32x, which yields A = 1/487
and B = 1/96.

11.4) We have
Taa—aa =0,
Taa—a =0, ]

1 1
Tas—BB = 9° | — T3 1 )

Tasa—pc =0,

1 1
TAB—>AB = 92 2 + 2 ‘| ’

Tap_ac =0, (11.76)
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12 DIMENSIONAL ANALYSIS WITH h=c =1
12.1) he = 0.197327 GeV fm.

12.2) m, = 0.93827 GeV,
my, = 0.93957 GeV,
m,+ = 0.13957 GeV,
m,o = 0.13498 GeV,
me = 0.51100 x 1073 GeV,
m, = 0.10566 GeV,
m, = 1.7770 GeV.

12.3) By dimensional analysis, 7, must be proportional to iic/m,. The proton is a blob of strongly
interacting quarks and gluons, and there is no small dimensionless parameter associated with
it; therefore we expect the constant of proportionality to be O(1). Our guestimate is then
rp ~ he/my, = 0.2fm. The measured value is 0.875 fm.
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13 THE LEHMANN-KALLEN FORM OF THE EXACT PROPAGATOR

13.1) We start with eq. (13.12), take 3/9y°, and then set y° = 20 to get
Olp()p0) = [ dkik® o) 4 [

d3k e i [ &
_ et (x—y) d / ik-(x—y)
2/ 2 i ® ] o€

=5 53(x -y) {1 + A:; ds p(s)} . (13.19)

dsp /dlmko ik (x=y)

Similarly, we take 9/0y° of eq. (13.13) and set 3° = 2° to get

01p0)e(@)l0) = 58— 3) [1+ [ dsols)] (13.20)
Subtracting eq. (13.20) from eq. (13.19), we find
Ollp(e). o0)]0) = 18— 3) |1+ [ dsps)] (13.21)

when 3° = 2%, On the other hand, the conjugate momentum to the field ¢ is Il = 9L/0¢ =
Zop. The canonical commutation relations tells us that [p(z),II(y)] = i0®(x — y) when
y? = 20, and therefore that Z,[p(z),o(y)] = i63(x —y) when y° = 2°. Comparing with

eq. (13. 21), we see that we have

1 _ o0
Z, =1+ dsp(s) . (13.22)

4m?

Note that this implies that Z, < 1, and that Z, = 1 only if p(s) = 0.
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14 LoorP CORRECTIONS TO THE PROPAGATOR

14.1) Starting with eq. (14.50), we have
H P al a;—1
L A% / dty...dt, I I t; exp( YAt ) (14.55)

Now we insert a factor of 1 = [7°dsd(s — > ;t;) on the right-hand side, and then make the
change of variable ¢; = sx;. The delta function becomes (s — s3> ;z;) = s 16(1 —>_;2;). Then
we have

1L FAfjj / dxy ... dxy, (1—22-@)1_[:5?”_1/ ds s~ 1T exp(—sZiAixi). (14.56)
; 0

The integral over s yields I'(>"; a;) (>, Aixi)_zi @, The integrals over the z;’s, along with
the delta function, constitute the integral over dF;, divided by (n—1)!. So we have

1

) F 1 (2 al
1L (i - Z Rl / dF, , (14.57)
IT; A; (5, 24 A (3, s A i
which is equivalent to eq. (14.49).
14.2) We define I; = [ d% e >". In cartesian coordinates, I; = [[ VT dry e 7} = (ym)d = 72,

1.2
dler

In spherical coordinates, Iy = Qg [;° drr . Let u=1r?; then rdr = ;du, and we have

I, = %Qd fooo duud/2_1 e = %er(%d)

14.3) a) The integrand in eq. (14.52) is odd under ¢ — —¢, and so vanishes when integrated. The
left-hand side of eq.(14.53) is a two-index constant symmetric tensor, and so must equal
g A, where A is a Lorentz scalar. To determine A, we contract both sides with g, ; since
G g’ = 0," =d, we find Cy = 1/d.

b) The result is a constant four-index completely symmetric tensor, and hence must equal
(9" g7 + g"P g°" + g7 g*P) B. Contracting this with g,,9,,, we get (d> +d+d)B = d(d+2)B
Therefore

1
/ddq """ f(¢*) = TN

(d_|_2) (g/wgpa 4 gupgau 4 guagup) /ddq (q2)2f(q2) ) (14.58)

14.4) We subtract eq. (14.43) from eq. (14.39), divide by «, and drop higher-order terms to get

0=1 /1 dz DIn(Do/m?) + (Lsa + 1)K + (s + 5)m?
= 3i(37rx/§— 17)k% + (ﬂf 6)m?> + (3K4 + 12)k: + (kB + 15)m m?.  (14.59)
So we find k4 = §(14 — 3mV/3) = —0.3874 and rp = 5(11 — 27/3) = 0.0098.
14.5) See section 31. From eq. (31.5), we have

A
1672

1
I(k?) = ~ 5t In(p/m)|m? — AK* — Bm® + O(?) . (14.60)
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We see immediately that
A =007,
A

B

_ Ly 2
= T6:2| = + 35 +In(p/m)| +O(X7) . (14.61)

and that TI(k?) = 0 to O(\).

14.6) The only difference is that the loop has a symmetry factor of S = 1 rather than S = 2, so
there is an extra factor of 2 in the loop correction, and hence in B; A is still zero at one loop.

14.7) a) Set Q = (2w)"'?(al + a) and P = i(w/2)"/?(al — a), where [a,a] = 1. Then Hy =
w(a'a + 1), and

Hy = 3(Z7'-1)P? + 3(Z,—1)w*Q* + \Q*
~3RaP? 4 1rpQ7 + Q' + O(N) .
2w {/{A(aT—a)2 + kpla’+a)® + (aU—a)ﬂ +0(\?). (14.62)

b) Using a|n) = /n|n—1), af|n) = /n+1|n+1), and alaln) = n|n), we find (1|Q[0) =
(2w)~Y2, and

(n'\(aT—a)2\n> =/ (n+2)(n+1) 6/ pt2
- (2n—|—1) 5n’,n

+y/n(n—1) 6y n_2 , (14.63)

(n'|(a"+a)?|n) = /(n+2)(n+1) Gp pi2
+ (2n+1) 6y

+/n(n—1) 6y n—2, (14.64)

(n'|(al+a)|n) = 1/ (n+4) (n+3) (n+2) (n41) S pa

+ (4n+46)1/ (n+2)(n+1) 6r/ nt2
+ (6n*4+6n+3) 6,7 1,
+ (471—2) n(n_l) 5n’,n+2

+/n(n—1)(n—2)(n~3) S nsa - (14.65)

We have in general that Ex = &, + (n|H|n) + O(A\?), where &, = (n+3)w is the unperturbed
energy, and so

Eq = tw+ 1 w(—ka + kg +3) + O(N?) (14.66)

Br = 3w+ Iw(-3k4 + 3rp +15) + O(\?) . (14.67)
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For the states, we have in general that

|H1|TL

ey - n') + 0\, (14.68)
n'#n n' — En
and so
Q) = [0) + 1 “Aﬁ“’;ﬁ%ﬁpwf_ﬂ@ o0, (14.69)
1) = 1)+ 32| AVE LR VE LIV ) VIO ) o0y, (1a0)

c¢) From eqs. (14.66) and (14.67), we see that requiring F1 — Eq = w fixes k4 — kp = 6. Next,
we act on |Q) with v2w Q = a' + a; from eq. (14.69), we find

V2w QQ) = [1) + 1A RAV2 A+ ,@;\/m 6*/5(\/§|3> +V21))

+ g(\@m + \/?L|3>) +0(\?) . (14.71)
Using eq. (14.70), we find that
V2w (1|QIQ) = 14 IA(ka + kp +6) + O(N?) . (14.72)

Requiring v2w (I|Q|€2) = 1 fixes k4 + kp = —6. Hence k4 = 0 and kp = —6.

d) Using .
id1(k?) = $(—i\i®)2A(0) — i(Ak* + Bm?) (14.73)
from section 30, with the substitutions m — w and A\ — 24\w?, we find that the self-energy
is
iTI(K?) = 2 (=24iAw®) 2 A(0) — iA(kak? + kpw?) + O(N?) , (14.74)

where, after making the Wick rotation,

~ Cteodr 1
A(O)_z/_oo e

i
= —. 14.75
55 (14.75)
Requiring II'(—w?) = 0 fixes k4 = 0, and then requiring II(—w?) = 0 fixes kp = —6, as we
found in part (c). Agreement is required, as the conditions defining w and the normalization
of () are the same.
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15 THE ONE-LooOP CORRECTION IN LEHMANN-KALLEN FORM

15.1) a) We have I1(k?) = [joop(k?) — Ak?* — Bm? + O(a?), and we fix A by requiring II'(—m?) = 0.
To O(«), this condition yields A = H{OOp(—mQ). Eq. (15.15) then follows immediately from
Cauchy’s integral formula; see e.g.
http://mathworld.wolfram.com /CauchyIntegralFormula.html .

b) The right-hand side of eq. (14.32) is manifestly real if D is real and positive. As discussed
in the text, D can be negative only for k? < —4m?; then the fractional power DE/2 results in
a branch point.

c) At large |w|, Theop(w)/(w +m?)? ~ |w|7'7¢/2  and so along an arc at |w| = R the line
integral becomes R~5/2df, which vanishes as R — oc.

d) Above the cut, we have D = ¢/™=9)|D|, and below the cut, we have D = e~“"=9)| D|, where
€ (not to be confused with €!) is a positive infinitesimal. Thus DE/? = ¢!™¢/2|D| above the
cut, and DE/? = e=""€/2| D| below the cut (where we have now taken € to zero). We see that
the real parts match, and the imaginary parts have opposite sign; this implies eq. (15.17).

e) Eq. (15.18) follows immediately from egs. (15.16) and (15.17). Note that there are three
overall minus signs: one from eq. (15.16), one from ds = —dw, and one from swapping the
limits of integration. Examining eq. (15.13), we see that the integrand in eq. (15.18) is simply
the O(«) contribution to mp(s). [The s — s + ie prescription is implicit in eq. (15.18).] So
we conclude that, to O(a), A = — [;-2ds p(s). Since Z;l =1— A+ O(a?), this verifies
Zyt =14 [pmads p(s) to O(a).

Incidentally, you could try to carry out this integral over s with finite €, then take the € — 0
limit, and hence get the value of k4. Doing this with Mathematica yields some horrible
expression in terms of hypergeometric functions for x4, but numerically it does agree with
our result in problem 14.4.

15.2) We start with the Cauchy integral formula for second derivative,

" (k%) = 2! ;i—;”i % , (15.20)

and follow the analysis above. The only difference is an extra minus sign from the denomi-
nator, and the result is eq. (15.19).
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16 LoorP CORRECTIONS TO THE VERTEX

16.1) See section 31. From eq. (31.8), we have

Vi=—(14C)A\+ 3N [F(—s) + F(—t) + F(—u)] + O(\*) , (16.16)
where . 5 )
F?) = 7 {g + /0 do In(y? /D)} , (16.17)

and D = z(1—x)k? + m? — ie. We require V4 = — ) for s = 4m? and t = u = 0; We find

F(O) = 155 | = + (e /m?)] |
F(—4m?) = W[g + In(p?/m?) +2} : (16.18)
and so
_ %22 E +In(u/m) + %} o). (16.19)

16.2) We must be careful with symmetry factors. For aa — aa, the contributing one-loop diagrams

are
>©< :ZZ + crossed

The s-channel diagram has a symmetry factor of S = 2, while the ¢- and u-channel diagrams
have S = 1. So instead of eq. (16.16), we have

Vi=—(1+ A+ N[AF(=s) + F(—t) + F(~u)] + O(\) , (16.20)

which results in B 11
=—|-—+1 + i+ 3. 16.21
62| 2 n(u/m) 5 O(\%) (16.21)
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17 OTHER 1PI VERTICES

17.1) We have

z1(0—k1)? + 2o (b+ka)? + 23 (L4hotks)? + 240
= 0 + 2(— w1 k1 +aokat+as(katks))l + 21ki + 22k + w3(katks)?
= [0+ (—z1k1+zoko s (katks)))?
— (—x1ki+aoko+x3(kotks))? + 21k? + 2ok3 + 23(ko+k3)?
=¢+D, (17.6)

where

D = —(—ﬂjlk’1+$2k’2+3§3(kf2+k’3))2 + ﬂilk‘% + ﬂigk‘% + 333(](324-]{33)2
= :El(l—l‘l)k‘% + $2(1—$2)k‘% + l‘3(1—$3)(k’2+k‘3)2
+ 2%1%2/?1]?2 + 2x1x3k1(k2+k3) — 2x2x3k2(k‘2+k3) . (177)

Next we use

2herky = (ky+ko)? — k3 — k2, (17.8)
2k1(/€2+k3) = 2k (—k1—ky)
= —(k‘l—l—k’4)2 - k’% + k‘z
= —(ko+ks)® — K + ki , (17.9)
—2ky(kotks) = —(kotks)® — k3 + k3 (17.10)

to get

D = a:l(l—xl—xg—xg)k% + 1’2(1—1’2—1’1—%3)]?% + 1’3(1—%3—%1—%2)(1€2+k3)2
+ xlxg(k1+k2)2 + xlxgki + x2x3k§
= x1x4k% + x2x4k§ + x3x4(k‘2+k3)2 + xlxg(k1+k2)2 + Jflxgki + x2x3k§ , (17.11)

QED.
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18 HIGHER-ORDER CORRECTIONS AND RENORMALIZABILITY

18.1) a) [£] = d and [y*9,] = 1, so [¥] = [¥] = L(d—1).
b) [gn] + 2n[¥] = d, so [gn] = d — n(d—1).
¢) [9m.n] +mlp] +2n[¥] = d, and [¢] = 5(d~2), 50 [gmn] = d — 3m(d—2) —n(d - 1).

] =
d) [gmn] =4 —m —3n, so only [g11] =0, nd all the rest are negative; thus g1,1pP ¥ is the
only allowed interaction of this type for d =
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20 Two-PARTICLE ELASTIC SCATTERING AT ONE LOOP

20.1) For m? = 0, we have —Dy = 1/(x1x95 + x314t); we treat s and ¢ as complex, and so ignore
any poles in the Feynman parameter integrand. We then have

dF4 1 1—x1 l—x1—x3 d$2
- = —3!/ dl‘l/ d:L'g/
Dy 0 0 0 r1295 + x3(1—11—22—23)t

Loplem s Int4Ina — 1
=<3 [ day [ ey P

xr18 — x3t
_ _3'/ dzs /1 3 dwl In(s/t) + In(xy/x3) (20.20)
(x1/m3)s —t '
Now let 1 =yzx3; 21 < 1—23 =y < 1/w3 — 1, and so
dF. 1/z3— 1 t)+1
_4 _ _31/ dmg/ % (20.21)

Note that y < 1/x3 — 1 is equlvalent to x3 < 1/(1+y), so we can write

1/(1
@:_3'/ y// +y) dis In(s/t) +1ny
ys —t

Dy
1 In(s/t)+Iny
= —3!/ d . 20.22

0 4 1+y ys —t ( )

These are standard integrals:

/°° dy :ln(—s/t)
o (y+1)(ys—1t) s+t

e dy Iny - [1H(—s/t)]2
/o (y+1)(ys—t)  2(s+1t) (20.23)

Using In(—s/t) = In(s/t) — iw then yields eq. (20.17).
20.2) From eq. (20.2) with s = 4m? and t = u = 0, we find
T toop = V3(4m?) A(—4m?) + 2V3(0)A(0) + V4(4m?,0,0) . (20.24)

So we just have to evaluate some Feynman parameter integrals. I will give only the results,
computed by Sam Pinansky:

A(0) = [ + (11— 27v3)a]
1 s [1+ 550~ 27V3)al
V(0) = g[ L6 —7V3)al,
Vi(4m?) = g[1+ 38 - 7v3)a] ,
Vi(4m?,0,0) = — L [1(3 - 27v3)a] , (20.25)
which yield

52

o 21+ 45489 — T07V/3)a . (20.26)

7-1 —loop —
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21 THE QUANTUM ACTION

21.1) This follows immediately from egs. (21.12), (21.14), and (21.18).

21.2) a) If we make the change of integration variable specified by eq. (21.22) in eq. (21.2), we find
that it is equivalent to the replacement of eq. (21.23).

b) For notational convenience, treat the spacetime argument as part of the index. The
solution to 6W/6J, = ¢4 is called J,q. If we now take ¢, — Rgppp, the solution is
J¢b(R_1)ba. To see this, let Ko, = spb(R_l)ba, so that Jy, = KqRap, and compute 6W/JK, =
((5W/5Jb)(5jb/5Ka) == ((5W/(5Jb)Rab = SDbRab = Rab‘Pb' So we let Pa — Rab‘Pb and Jspa —
Joe(R™)eq in eq.(21.20). The R matrices cancel out of the J, term, and we saw in part
(a) that W (J,) is invariant. So I'(¢) is also invariant.

21.3) If we make the change of integration variable ¢ — ¢ — ¢ in eq. (21.24), we find
W(J;p)=W(J;0) - /ddx Jo. (21.28)

Taking 6/6J(z) we find
W (J;¢) W (J;0)
§J(x)  6J(x)

We use eq. (21.26) to identify the left-hand side of eq. (21.29) as (), and rearrange to get

— 3(a). (21.29)

T = pla) + o). (21.30)

Let J,.s be the solution of eq.(21.26). (It was called J, in the problem, but this notation
is more useful.) In this notation, the solution of eq.(21.30) is Ju4.0. Since eq.(21.30) is
equivalent to eq. (21.26), we see that

Joip = Jotg0 - (21.31)

Starting with eq. (21.25), we find
L(p;p) = W(*Lo;gb?@) - /dd3j Joipp
= W(Jp5:0) — /ddx Joiz(p + @)

= W(Jpt:0;0) — /ddx Jotrg0(p + @)
= I'(p+¢;0) , (21.32)

where the second equality follows from eq. (21.28), the third from eq. (21.31), and the fourth
from eq. (21.20).
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22 CONTINUOUS SYMMETRIES AND CONSERVED CURRENTS

22.1) In eq. (22.6) with g = 0, we have 0L/9(0ypa) = OL/Dpq = 1, and so j° = I1,6p,. Thus,

for y° = 2%, we have [pa(2),j°(y)] = [pa(), Iy(y)]dws(y) = i6°(x—y)dapdipp(y). Integrating
over dy yields [p4(), Q] on the left-hand side and i6py(z) on the right-hand side. Since @
is time independent, our choice of y° = 2 is justified.

22.2) Taking y° = 2°, we have [pq(2), T%(y)] = ~[@a(@), T (y)]Vies(y) = —i6> (x—y)dap V' (y)-
Integrating over d% yields [p,(x), PY] on the left-hand side and —iVigp,(z) on the right-
hand side. Since P’ is time independent, our choice of y° = z° is justified. We also

have [i0q (), T%(y)] = [0a(2), 310 (y) Iy (1)] = 5[0 (x), Mo () (y) + 5TT(y) [ pa (), Ly ()] =
0% (x—y)dap1ly(y). Integrating over d*y yields [p,(z), P°] on the left-hand side and ill,(z) =
ipa(x) = —id°p,(z) on the right-hand side. Since P is time independent, our choice of
Y9 = 2V is justified.

22.3) a) We have, with y* = 2,
[T%(2), T (y)] = $[Ma(2)a(2), $V0a(1)V @aly) + V(e(y))] — (z < y)
= —4illa () [V 0a (y) V), + OV (0)/0pa] 6 (x—y)
—3i[V@a(y) V], + OV (9) /00a)8° (x—y)la(z) — (x = y) ,  (22.42)

[T%(2), T(y)] = —[Ma(), 3V 2a(y) V' ¢aly) + V()] V'¢a()
~Ma () Vi [pa (@), 310 (1) (1)] |
= i[V 0 (y) VI + OV () /0pa]6* (x—y) Vipu ()

_iHa(‘T)Ha(y)vgcég(x_y) ’ (22’43)

[T%(2), T ()] = [Ma(2)V'¢a(), ()] V7 0b(y)
+1,(y) Vi [Ta (2) Viipa (), 05 (y)]
= illy(2) V30" (x—y) V' a(y)
—illy(y)V}6° (x—y)V'pa() . (22.44)
b) If we integrate over d*r and d%, we generate [H, H], [P?, H], and [P?, P7], respectively.
The first of these vanishes (as it obviously must) because the x < y term cancels the first

term after x and y become dummy integration variables. After some integrations by parts,
it is easy to see [P’, P?] vanishes as well. The hardest is [P*, H]; we have

(P H] = i / &1 =20, Vion + (OV/000) V' 00 + T, VT,
—i / & [V 0a ViV ou + (OV /000 V' 00 + T, VL,
— i/d?’x Vi[%ngpangpa +Vip) + %Haﬂa]

=i / I RAVAY L (22.45)
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This vanishes (assuming suitable boundary conditions at spatial infinity) because it is the
integral of a total derivative. This illustrates a useful general rule: since (as is easily checked)
[P, 0a(z)] = iVip,(x) and [P 11, (z)] = iV, (z), any local function F of ¢, (x) and I, (z)
and their spatial derivatives will obey

[P’ F(x)] =iV'F(x) . (22.46)
Next let us define
C' = / d*r T | (22.47)
DV = / d3z T | (22.48)
so that
K'i=C' —2'P", (22.49)
Jt = glkpik (22.50)

Using eqs. (22.46) and (22.47), we have

[P}, CI] =i / R A VAL e

= —isH (22.51)

Using eq. (22.49) and [P?, P/] = 0, we get [P', K/] = —i6“ H.
Now using egs. (22.46) and (22.48), we have

[P, D] =i / d®x 2 VITO
= —i/d?’x (Viad)T%
— i [T
= —i pPF (22.52)

Contracting with €Y% and using eq. (22.50), we get [P, J'] = —iclk P*.

To see that [J!, H] = 0, we multiply eq.(22.43) by 27 and integrate over d and d3% to
get [D7', H|. Without the factor of 27, the result would be [P’, H], which vanishes; thus a
nonvanishing term can only result from an integration by parts that puts a V¢ on z7. Such
a term would be proportional to 67, and so vanishes when we contract with ¢ to construct
Jt.

To compute [H, K] = [H,C?], we multiply eq. (22.42) by y’ and integrate over d*z and d%.
Without the factor of y*, the result would be [H, H|, which vanishes; thus a nonvanishing
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term can only result from an integration by parts that puts a V; on y*. The relevant terms
yield

(1.0 = ~4i [ d dy y () aly) + Vioa(y) L ()] V5% (x-)
= 3 [ @ dy (Vi) @)V paly) + Tpa(y)Ta ()0 (x-3)
= +3i [ @ 59[(@) Vi pu(a) + Vipu o) TLa o)
= +3i [ @ UM @)V (@) + V95 (0)
— 5P (2253)

Finally, to compute [J™, J"] = ™™ [DF DU], we multiply eq. (22.44) by xFy' and inte-
grate over d% and d%. We get

(DM, DY) = i [ d dy ¥y [T (@) V38" (x-3) Tiealy) ~ () V30" (x=y) Vicpulo)|
— i [ & dYy [y V@ () Vealy) — VY L) Ve (@] ()
= —z’/d3x 2V (2L, Vg, — xkvj(xlna)vi%}

_ —z/d3 O, + ah T, Vg, — 2 (1, + ' VIIL) Vi, . (2254)
The 6% and 67! terms will vanish when we contract with e”#7¢"; thus we have

[J7, J") = —ig™mkigntd / o [ VT,V g, — 22! VT, Vi, |
= fiemkignli /d?’:n 11, [Vi(xkznlngpa) — Vj(:nkxlvigoa)}
= fiemkignli /d3:n I, {(5“‘3:13[ + otk 4+ kalvi)vj — (z’<—>j)} Ya
= i [l 1Y - 6 Vg,
= —jemkignlj /d?’az 5lekT0j — (5jkxlT0i)
— _jemkignli (5l pki _ 5ik pliy
_ _i[(gmkignij)ij . (Emjignlj)Dli}
= i [(wmé’m — gikgmnypki _ (gingtm _ 5“5“1")1)“}

_ _Z{Dnm _Dmn}
= Fig™PgP (22.55)

That was a lot of tedious work, but it’s always good to confirm general arguments with specific
calculations.
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DISCRETE SYMMETRIES: P, T, C, AND Z

47
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24 NONABELIAN SYMMETRIES

24.1) R"R =1 = RyjRy = 655 = (6ij + 0i5) (i + Oir) = 1 = 0i50ir + 0501 + 0350:, + O(0%) =
5jk = 5jk + ij + ij = 5jk = ij + ij =0.
24.2) Let R =146, R’ = 1+ ¢'; then, keeping terms up to O(6?), we have
RTRT'RR=(1-60+60*1-0+6*1+6)1+06)
=1+60'0—60". (24.17)

This must be an orthogonal matrix of the form 1+6". Using eq. (24.6), we find 26"°[T*, T%] =
i0"°T°. Since the real parameters % and #° can be chosen arbitrarily, this can only be true
if [T%,T% = if®°T°, where the coefficients f are real.

24.3) a) From eq. (22.6), we have

oL
01 = ————0p;
0@up0) "
= (=0"pi)(—10"(T")ij05) (24.18)
which yields
JH =10 pi(T)ij05 - (24.19)

b) Q = [d% j°(y), and j° = i p;(T)jpr = —ipi(T*)jrpr = —iL;(T*)jrpx. Q is time
independent, so we can take 4° = 20, Then [¢i(2), % (1)] = ~ile: (@), T (9)](T) 500 (y) —
53(x—y)5ij (T)jrr(y). Integrating over d%y yields [p;(2), QY] = (T*)inor ().

c) Consider [[¢;, Q%], Q%] = (T")i;l;, Q"] = (T)i(T")jxer = (T°T")ixok; swapping a and b
yields [[¢i, Q°], Q%] = (T°T%);ppk. Subtracting, we get

i, Q) Q%) — [[i, Q"), Q") = [T, T")ikor = i f™(T)intpr, - (24.20)

The left-hand side of eq. (24.20) can be rewritten as [[p;, Q%], Q"] + [[Q°, s, @%], and by the
Jacobi identity, this equals —[[Q%, Q°], ;], which can be rewritten as [¢;, [Q%, Q%]]. Thus we
have

i, [Q%, Q") = i f ™" (T )ireor - (24.21)
Contracting [@;, Q°] = (T°)0p with i £ also yields the right-hand side of eq. (24.21). Thus,
[Q%, Q%] —i f*¢Q° commutes with ¢, (z), and (since Q% is time independent) also with ¢, () =
I, (). Therefore [Q%, Q%] — if®°Q° must equal a constant tensor with two antisymmetric
adjoint indices. There is no such invariant symbol for SO(N), and so the constant tensor
must vanish.

24.4) Let S = 1+ 60; then SnST = 5 implies Oy + ndT = 0. Let us write

A B
0 = ( ) . (24.22)
C D

-B+ BT A+DT>

Then

(24.23)

On +no" =
(N <—A—DT c-cT
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and this vanishes only if BT = B, CT = C, and DT = A. Thus we can choose the N2
elements of A freely, while B and C each have $N(N+1) independent elements. Thus the
total number of independent matrix elements of 6 is 2N+ N = £(2N)(2N+1), so this is the
number of generators of Sp(2N).
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UNSTABLE PARTICLES AND RESONANCES

26 INFRARED DIVERGENCES

50
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27 OTHER RENORMALIZATION SCHEMES

27.1) For notational convenience, let ¢ = Inu; Then we have da/dt = bya?, or equivalently dt =
da/bia®. We also have dm/dt = ciam, or equivalently dm/m = ciadt = (c1/b1)da/a.
Integrating, we find In(ma/m1) = (c1/b1) In(aa/a1), which implies eq. (27.29).
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28 THE RENORMALIZATION GROUP

28.1) From section 31, we have

Z,=1+00\?), (28.49)
Al
T =14+ ——= = 2 28.
+ 15 - HON), (28.50)
31 1
Zy=14—— 2 28.51
A +167T2€+0(>\), (28.51)

and B()\) = 3A2/167% + O()\?). Following section 28, we define M, (\) via

> Mgiff) =1In(Zy*Z ;%) . (28.52)
n=1

Then we have v,,(A) = AM{()). Using eqs. (28.49) and (28.50), we find M;()\) = \/3272, and
S0 Y (A) = A/3272. Similarly, we define Z, = 14 a1(\)/e + ..., and then y(\) = —3Aa} (N);
we have a;(\) = O(A2), so v(A) = O(\?).

28.2) From problems 14.6 and 16.2, we have

Z,=1+00\%, (28.53)
Al
T = 1+ == — 2 28.54
+ g3 TON), (28.54)
5\ 1
Zy=14—5= R 28.
=145 -+ 00 (28.55)

These yield B(\) = 5A2/167% + O(\3), ym () = /1672 + O(\?), and v(A\) = O()\?).

28.3) No term linear in y is needed because it enters the lagrangian only in even powers, and so we
cannot draw a diagram with just one external y line. Thus its VEV is automatically zero.
Equivalently, the lagrangian is invariant under the Zs symmetry y — —y, and the argument
at the end of section 23 applies.

a) Use a solid line for x and a dashed line for ¢. The one-loop and counterterm diagrams
contributing to the y propagator are

Note that the symmetry factor of the loop diagram is S = 1. Following the analysis in section
14, the corresponding contributions to the self-energy are

I, (k%) = —% (S +.. >/01 dr D1+ O(e)] — (Zy—1)k* — (Zy—1)M?, (28.56)

where D = x(1—x)k? + om? + (1—z)M?. We have fol dz D = tk* + Im? + £ M2, and so
cancelation of the 1/¢ terms requires

h? 1
Z, =1— — 28.
x 3(am) 2 (28:57)
h2 m2\ 1
Iy =1— 1+— |- 28.
M (4@3( * M2>a ’ (28.58)
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at the one-loop level. For the ¢ propagator, we have

Each loop diagram has a symmetry factor of S = 2. Thus we have

93

I, (k%) = —% 4;)3 (2 + .. ) [92(%19 +m?) + B (3k% + M?) + .. } —(Zpy=1)k* = (Zpy—1)m?

3

and so cancelation of the 1/e terms requires

1 1
Z,=1- 24 h?%)-
v 6(477)3(9 + )a’
1

M? 1
Iy =1-— ey Y
M (47T)3( + h)g

at the one-loop level. For the 3 vertex, the contributing one-loop diagrams are

e
/ AY
1
\
~
//\‘/ ~ - ~

Using our results from section 16, we have

Vs = Zgg+(47lr) (l—k...)(gg—kh?’),

and so cancelation of the 1/e terms requires

- 1 (4, kB\1
Zg—l—<4ﬂ>3<9 +;>g

at the one-loop level. For the @x? vertex, the contributing one-loop diagrams are

Using our results from section 16, we have

Vo, Zhh+(47lr) <1+...>(gh2+h3),

and so cancelation of the 1/e terms requires

at the one-loop level.
b) We have

Ingg = G—i—lng—i—%alnﬂ,
Inhg = H+1Inh+ielnj,

(28.59)

(28.60)

(28.61)

(28.62)

(28.63)

(28.64)

(28.65)

(28.66)
(28.67)
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where G = Y, Go/e" = (257 Z,) and H = ¥, Ho/e" = In(Z,"* 271 Z), and

1 -
L= g 38" = 300 + (=g = 1)
1 -
i __%92 1p2 hs/g} ’ (28.68)
1 -
L= Gy B80T %) = <3k + (gh - )
1 -
(47T)3 _11292 o gh . 172 h2} ) (2869)

Differentiating eq. (28.66) with respect to p, multiplying by gu, and denoting pd/dp with a
dot, we find

0=gG+g+%sg
— 8_G'_|_ a_Gh+‘+lE

- oG\, | G,

Similarly differentiating eq. (28.67), we find

o aH ; 8H . 1

Egs. (28.70) and (28.71) can be combined into

1+9%2  g%% /g g
0= < 6Hag ahaH )( . ) + %s( ) . (28.72)
ha_g L+ higy h h
Solving for ¢ and h, we have
; 14 g% g24 -t
g 0 0 g
( . ) - _%g< . h@f{) ( ) . (28.73)
h hay 1+ h%;; h
Formally expanding in powers of 1/e, we find
. oGy 9Gy
g g 9% 9on g
<.>:—%5< >+§< o )( >+0(5-1). (28.74)
h h el VAN

The O(e7!) and higher terms must vanish in a renormalizable theory.

c) Plugging eqs. (28.68) and (28.69) into eq. (28.74), we find

By(g,h) = o {_%gs +1gn% — hs} 7 (28.75)
(g h) = @ [~ Lh® = gh® + Lhg?] . (28.76)
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d) If we change the sign of g, we can compensate by changing the sign of both ¢ and h. But
once the sign of ¢ is fixed, we cannot compensate for changing the sign of h. We see in the
formula for 3, that the sign of h is relevant.

If 5,/g and B}, /h are both negative, the theory is asymptotically free: both couplings get
weaker at high energy. Let us define r = h/g; then we have 8,/g = (¢?/4(47)3) (=3 +r —4r3),
which is negative for r > —1, and 8, /h = (g?/12(47)3)(=7r? — 12r + 1), which is negative for
r< —%(\/@ +6) = —1.78 and for r > %(\/@ —6) = 0.08. Thus the theory is asymptotically
free for » > 0.08.
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29 EFFECTIVE FIELD THEORY

29.1) a) Let a dot denote d/dIn A, so that § = b1g? + bag® + ... . Inverting § = g + cog® + ..., we
have g = § — c2g* + ... We now have

G =G—2c2GG+ ...
=(1—-2cG+...)7, (29.44)

or, rearranging,

(1+2c5+...)7" 1

(1+2c0G+...)(b1g? +bag® +...)

(142¢2G 4 - )[b1(§ — c2®)* + ba(§ — 25°)° + .. ]

big* +bed® + ... . (29.45)

g

b) Just make everything into a matrix: we then have ¢; = b2 ;;kg;9x + b3.ijk19;9%k91 + - .. and
9i = §i — €2,ijkGjJk + - .. . Everything in part (a) still goes through.

29.2) a) We use the relation A(k2)~1 = A(k?)~! — II(k?), and only fields with A < |¢] < Ag
circulate in the loop in fig. 14.1; in this case, A(kzz) is the propagator with a cutoff A, and
differentiating A (k%) with respect to k2 (and setting k2 = 0) yields Z(A), the coefficient of
the kinetic term when the cutoff is A. The vertex factor is —Z%2(Ag)g(Ag), and the tree-level
propagator is A(k?) = 1/[Z(Ag)k?]. We thus have Z(A) = Z(Ag) — IT'(k?). At the one-loop
level,

() = 4292 (0)g(Ao))” [ v ! (20.46)

A (2m)8 [Z(A0)][Z (No)(E+F)?]

where the one-half is a symmetry factor. Differentiating with respect to k2, setting k? = 0,
and plugging into Z(A) = Z(Ag) — II'(k?) then yields the first unnumbered equation in the
problem text.
Using Feynman’s formula, we have 1/(¢2(0+k)?) = [y dz (¢*+a(1—x)k?)~2, where ¢ = (+zk.
Differentiating with respect to k? and setting k to zero yields —2 fol dz x(1—2)(0?)=3 = — 1075,
Thus we have

II'(k?) = —5Z(Ao)g” (Ao)

9°(Ao)
6(4m)3

Qs /A ode
3(2m)6 Ja, €6

= —Z(\o) In(Ag/A) , (29.47)
where Q; = 27%2/T'(1d), so that Qg = 7°. Plugging this into Z(A) = Z(Ag) — II'(k?) then
yields

g°(Ao)
6(4m)3

Z(A) = Z(Ao) (1 + In(Ag /A)) . (29.48)

The vertex correction works similarly; with a cutoff A, we have V3(0,0,0) = —Z3/2(A)g(A),
and only fields with A < |¢| < Ag circulate in the loop in fig. 16.1. This yields the second
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unnumbered equation in the problem text, which evaluates to

3/2 2
9(A) = ZzT((AAO)) 9(Ao) (1 + g( 4(:)%) 1n(A0/A)> : (29.49)

b) Using eq. (29.48) for Z(A), and expanding in powers of g(Ag), we find

2
g(A) = g(Ao) (1 +(=HH +1) 9(4%3) ln(Ao/A)>

3 9°(Ao)
= — . 29.
g(Ao) (1 + 1 @n? In(Ag/A) (29.50)
Differentiating with respect to In A and then setting Ag = A, we find
d 39°(0)
= —— . 29.51
amd YN = 1 Ty (2951)

Multiplying by 2g/(4m)3, the left-hand side becomes da/dIn A, where o = g2 /(47)3, and the
right-hand side becomes —%oﬁ. This agrees with our result in section 28.
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30 SPONTANEOUS SYMMETRY BREAKING

BROKEN SYMMETRY AND LLOOP CORRECTIONS
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32 SPONTANEOUS BREAKING OF CONTINUOUS SYMMETRIES

32.1) a) From eq. (22.14), j* = i0*plo—id* el so that jO = —iplp4ipel = —illp—illTp!, where
[o(x),(y)] = [¢'(z),IIT(y)] = i0*(x—y) at equal times, and all other commutators van-
ish. Thus [¢(x),7%(y)] = —ile(z), II(y)]e(y) = 6*(x—y)p(y), and integrating over d% yields
[p(x),Q] = p(z). Next, let F(a) = e et @@ and note that F'(a) = e~ ?i[p, QleT?.
Since [¢, Q] = ¢, this becomes F'(a) = ie " *Qpet®? = jF(a). Therefore F™ (o) = i"F(a),
and F(M(0) = i"F(0) = i"p. Thus, by Taylor expansion, F(a) = 3.5, F™(0)a"/n! =
Pl imal /nl = et
b) Since [H,Q] =0, H e"O‘Q|0> = 0, so e~**@|#) must be a linear combination of vacua. Then,
since eT10Qpe10Q — =iy, We have (flet*@pe™?|0) = e7*(h|¢|f); using eq. (32.5), this
becomes (f|et @ pe~?|9) = ﬁ ve~0F) — (1a|p|f+a).

c¢) Expanding in powers of «, we get (1 —iaQ)|0) = |0) + a(d/d)|0); the second term on the
right-hand side is not zero.

32.2) If Q*|0) = 0, then (0|Q* = 0, and (0|[¢;, Q*]) = (0]@:Q*|0) — (0|Q%p;|0) = 0. Thus if
(Olls, Q110) = (T*)35{0l;10) = 5(T)iv; # O, then Q|0) # 0.

32.3) a) j* = —idtpp! + h.c.; plugging in eq. (32.8), we get j* = —v(1 + p/v)20*y. In free-field
theory, we then find (k|j*(x)|0) = ivkte % so f = v.
b) We can compute corrections by treating j*(z) as a vertex, and drawing Feynman diagrams

with one external y line. The single tree diagram just attaches that line to the vertex with
vertex factor ivk*, yielding f = v. Loop corrections will modify this to f = v(1 + O())).
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33  REPRESENTATIONS OF THE LORENTZ GROUP
33.1) A = L(B™ — B""), T = g, B™, S" = L(BM 4 B"#) — LgmT,
33.2) 4[Ni, Nj] = [Ji, J;) — ilJi, K] — i[ K, Jj) — Ky, Kj) = iegjn(Jp — iKy — iKy, + Ji) = 4igijrNy.
AN, NT| =[5, T3] + il i, K] + [, Jj) — (Ko, K] = ey + iy + Ky, + Ji) = diegjeNy.
AIN;, NIT = [T, Jj] + il Ji, K] — i Ky, Jj] + (K, K] = ey + iKy — iy, — Ji,) = 0.
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34 LEFT- AND RIGHT-HANDED SPINOR FIELDS

34.1) Without the spin indices, this is the same as problem 2.8; we have 'U(A)_lzﬁa(:n)U(A) =
Vo () + 50wy [Ya(x), MH] on the LHS, and Lo (M) hp(A™ ) = [8a" 4 £0w,u (SE)ab] [t (z) +
20w, LMy ()] = ha () + 50w, [0.°LH + (SI)a"]1bp(2) on the RHS; matching coefficients
of dw,,, yields eq. (34.6).

34.2) The commutation relations of the S’s are the same as those of the M’s. In problem 2.4, we
showed that the commutation relations of the M’s are equivalent to egs. (33.11-13). Let us
define J' = %5“’“5{1‘6; from eq. (34.9) we see that J¥ = 2o*. Let us also define K* = S¥0;
from eq. (34.10) we see that K¥ = Lio*. Eqs. (33.11-13) for . and K then follow immediately
from the Pauli-matrix commutation relations, [0?, 07] = 2iFo.

34.3) Consider e#??¢,3,4; the indices on each Levi-Civita symbol must be all different to get a
nonzero result. Consider (for example) 5123‘750{570; then only o = 0 contributes to the sum;
and then the second symbol is nonzero only if a3y is a permutation of 123. If it is an even
permutation, then the result is £'?3%¢1939 = (—1)(4+1) = —1, and if it is an odd permutation,
then the result is +1. More generally, the result is —1 if a7y is an even permutation of uvp,
and +1 if a7y is an odd permutation of uvp. This is equivalent to eq. (34.44).

To get eq. (34.45), we contract with §7, and use 07,67, = 4. To get eq. (34.46), we further
contract with 6°,.

34.4) Consider first a tensor with N totally symmetric undotted indices, and no dotted indices.
Because the indices are totally symmetric, we can put them in a standard order, with all 1’s
before all 2’s. Each independent component is then labeled by an integer kK = 0,..., N that
specifies the number of 1’s, and so the number of independent components is N+1.

Next, using
[Cab..(0), N3] = 1(03)a"Cup..c(0) + 3(03)p"Caaa..c(0) + ... + 1(05)Cap_a(0) ,  (34.47)

which follows from eqs. (34.7), (34.9), J' = N' + N1 and [Cy.. (x), NT!] = 0, we have
[C11..2(0), N3] = (%k - %(N—k))cll___z(()) . (34.48)

We see that the allowed values of N3 are —%N,—%N—H, .. .,+%N, corresponding to k =
0,1,...,N. Thus these N+1 components correspond to a single irreducible representation
with dimension 2n+1 = N+1. If we now add M completely symmertic dotted indices,
these are treated independently, and form a single irreducible representation with dimension
2n’+1 = M+1. Thus, overall the representation is (N+1, M+1).
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35 MANIPULATING SPINOR INDICES

35.1) grae = gacgilal = —giqH et = _[(ioy) (o) (i09)]* = [(020*02)"]%%. Then for u = 3 we
have 090309 = (02)203 = —03 and ( 3)T = 63; the same is true for u = 1. For yu = 2, we
have o900y = (02)?0% = +02, and (02)" = —¢2. For u = 0, we have o9l0y = (02)? = I, and
IT = I. Thus we have 5% = I and 7' = —¢".

35.2) (St")." = (0”6 — 0¥5"), . Suppressing spin indices, we have S!? = 1(015% — 02%51) =
L(oh)(=0?) = (62) (=) = —i[ot,0?] = 403, and cyclic permutations. Also, SH0 =
1(0%5" — 0%") = (o) (I) - (I)(~0")) = 50"

35.3) (Sk")% = —L(6"0” — 6Vo")%. Suppressing spin indices, we have S}? = —L(510? — 5201) =
—L((=aY)(0?) = (=0?)(=0c)) = L[o!,0% = —1o3, and cyclic permutations. Also, SK0 =
—1(5%0" — 5% %) = —L((—=o®)(I) — (I)(c*)) = %O’k. Eq. (34.17) can be written as (S§”)%: =
—[(SEY2 ] = —[(SE)p)]™ = —[(S"),?]T. Comparing with our results in the previous prob-
lem, and using the hermiticity of the Pauli matrices, we see that (Sk”)% = —[(S£"),]! is
satisfied.

35.4) %ot oV, = oF.5v4 = Tr(o#5"). If p =0 and v = 0, we get Tr(I) =2 = —2¢%. If y =0

aa” cé :
and v = i or vice versa, we get the trace of o', which vanishes. If y =1 and v = j, we get

~Tr(0%07) = =269 = —2¢%.
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36 LAGRANGIANS FOR SPINOR FIELDS

36.1) In problem 2.9, we showed that egs. (36.56-57) hold for the vector representation. The result,
however, must be representation independent.

0.1.2.3 0 I 0 01 0 g9 0 g9
36.2) v5s =iy vy =i
I 0 —01 0 —09 0 —02 0
0 0

i01020'3
0 —ioyogos3) O\ 0 T

36.3) a) We have (X.{OMX2)(X§O-,U‘X4) = 0“““0’ X]iaxgaxgcxz;c Then we use 5’“‘”520 = —Qgtcghc

and XlaX2aX§,c-X4c = —XIaXzT),¢X2aX4c along with €%y, = x® and its dotted counterpart
to get (x]5"x2)(dhauxa) = 2xiaxd xeaxd = —2xlad xdxia = —20¢Ixd) (xaxa), which is
eq. (36.58). Then we use yaxs4 = X4X2, and go backwards throught these steps to get the

right-hand side of eq. (36.59).

b) Using eqs. (36.7), (36.22), (36.45), and (36.60), we find U1v" P, ¥y = x5/ s,
U, P 0§ = yixh, and WP, Wy = yyxa, which yield egs. (36.61-62) from eqs. (36.58-59).

c) In terms of Weyl fields, we have Wiy PyWy = 510'”{2 = —{25“51 = —USyHP VY,
U1 PL0s = €1y = xob1 = VSR UY, and U1 Py Wy = X&) = ¢hx] = TSR, 0¢.

36.4) a) This form for T" is identical to eq.(22.29). The derivation is unchanged if the index a is
replaced with the Lorentz index A.

b) For A = 1+ 6w, the Lorentz transformation ¢ (z) — LAB(MN)pp(A'1z) becomes ¢ 4(z) —
(5AB+%5wVp(S”p)AB)(<pB(x)—&wupxp(‘)”cpg(x)), so that dp 4 = 5wup(—x”8”cpA+%(S”p)AB)ch.
Also, L(z) — L(A™'z) implies 6L = —dw,x,0"L = O*(—0w,,g""xPL); we then identify
KF = —dw,,g" a2 L. Using eq. (22.27), we then have
oL
G = Soq — KM
0@upa) *

oL oL
= 6&)[/ R _xpal/(pA _|_ -
4m%wﬂ " )

oL -
— prppy icgvpy ,B
dwyp lx ™ + 9Oun) 5(S"7) A @B]

aymﬁ%+¢mwl

= —1éw,, lx“TW’ —2PTH — %(SW) ABop (36.81)
and we identify the object in square brackets as
MHWVP = gV THP — xPTHY - BRVP (36.82)
where
BMP = —j i(SW’) ABos . (36.83)

8(8MSDA)
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36.5)

c) Consider 0, M""P; we have 0,(z"TH") = 0,”TH + 2¥9,T" = T" + 0 = TP, and so
0 = 9, Mme = TV — TP 4 9, BIvP,

d) We have O = TW + 19,(Br — B — BYPr). Note that because (by definition)
SH = —SVF | eq. (36.83) implies BP*Y = —BPYF. Note also that the last two terms in O*
are symmetric on p < v. Thus we have O — @"F = T —TVI + 0,BPH, which vanishes
according to the result of part (c).

Next consider 0,0*" = 9, T"" + %QLOP(BPW — BHPY — BVPH) = %OH@,(BW” — BHPY — BYPI),
Note that BPFY — BFPY 4 BYPH is antisymmetric on p <> p, and therefore vanishes when acted
on by the symmetric derivative combination 0,0,,.

W = T% 4 19,(B*% — B% — BvY) = T% 4 19,(B"% — B% — B®). The integral over
d®c of %82( ..) vanishes (assuming suitable boundary conditions at spatial infinity) because
it is a total divergence. Therefore P” = [dx T = [ d*z ©".

e) Recall from part (c) that 9,(z”©#?) = ©"7 if 0,0*" = 0. We have ¥ = 2O’ — 2POM,
and so 9,EH" = O — O = (.
SR — gVTHP — pPTH 4 LoV g, (BOMP — BHOP — BPORY _ Lypg (BIHY — BHOV _ BYOK)

= MMP — BHP 4 Lyvg (BOHP — BHOP _ BPORY _ Lypg (BIHY — BHOV _ BYOKY)
and so
2P = MO — BV 1 Lav (B0 — B _ Bri%) 4 Lypg, (B0 _ gOv _ privy
Now using z¥0;(...) = 0;[z¥(...)] — (...)0ix” = Oi[z¥(...)] — (...)&;Y, we get
2P — MO — B _ L(BvOp _ pOvp _ pev0) | L(petv _ B0 _ pusy 4 g1 ]

= M — L(BY + B%) — (B + B"°) + §(B* + B”°) + §;[... ]
= M" +9,]..].
Since the last term is a total divergence, M"? = [ d%x M"P = [ d3x ZO°.
a) The transformation matrix must be orthogonal to preserve the mass term, hence the
symmetry is O(N).
b) A Majorana field is equivalent to a Weyl field, hence the symmetry is U(V).
¢) Combining the results of parts (a) and (b), the symmetry is O(N).
d) A Dirac field is equivalent to two Weyl fields, hence the symmetry is U(2N).
e) Combining the results of parts (a) and (d), the symmetry is O(2N).
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37 CANONICAL QUANTIZATION OF SPINOR FIELDS I

37.1) Eq. (37.13) follows immediately because all components of x anticommute with all components
of &7, To get eq. (37.14), we write

{Xe: €} {xc,x2}>
{efe, ey {et, X1}

0 oY 5 3( )
6.06(1 O

=18 (x—y) . (37.32)

{\I’On \Ilﬁ} = (

where we used eqs. (37.7) and (37.8) to get the second line.
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38 SPINOR TECHNOLOGY

38.1) In a basis where A is diagonal (with diagonal entries +1), exp(cA) = (cosh¢) + (sinh¢)A is

obvious. We have 2iK7 = —7~0 = (—g J (?‘ ), which obviously has eigenvalues £1, and so
J
(cosh 1n) — (sinh in)p-o 0
exp(inp-K) = 2 2 , (38.42)
0 (cosh 1n) + (sinh $n)p-o

where sinhn = |p|/m, coshn = E/m, cosh 3n = \/(E+m)/2m, sinh 3y = V(E —m)/2m.
cosf e ¥sinf ) Wo

e¥sinf  —cosf )’

can then act on uy(0) and v4(0) as given by eq. (38.6) to get us(p) and v4(p)

Also, using the usual angles 6 and ¢ to specify p, we have p-o = (

38.2) From the explicit form of the gamma matrices, we can see that (7)1 = 0 and (19)7 = —47.
Also, since # = 7° numerically, the gamma ‘matrix anticommutation relations imply 62_: 1,
Y0 = 2°3, and By7 = —73. Therefore 19 = B(Y))B = 37°8 = 1962 = 40, and 47 =
B(YI)'B =~y = 12 = 79, Thus, 77 = .
From the explicit form of 75, we see that it is hermitian. We also have {y*,~v5} = 0, since
~+* commutes with one gamma matrix in 75 = i7°y'v?+? and anticommutes with the other
three. Therefore 75 = 3(7v5)18 = 8758 = —v58% = —v5. Since i = —i, we have iy5 = i7s.
The remaining formulae in eq. (38.15) can be found from these by using AB = 3(AB)'3 =
BBTAT3 = BBIBBAT3 = B A.

38.3) Subtract eq. (38.19) from eq. (38.20), sandwich between u4(p) and vy (p’), and use p'vy (p') =
mus(p') and s(p)y = —ms(p) to get

2m T, (p)y" vy (P) = Ts(P) | (p — )V + 2" (p + P | 0s(D) (38.43)

If we now set p’ = —p (which implies p’® = p%) and p = 0, and remember that S = 0, all
terms on the right-hand side vanish. This yields the first equation in (38.22). An identical
derivation applies to the second; or, bar-conjugate the first and relabel.

38.4) Add eqgs. (38.19) and (38.20), multiply on the right by 75, sandwich between wy(p’) and
us(p) or vy (p') and vs(p), and use eq. (38.16). Then use Py = —75p, which follows from the
definition of s, followed by eq. (38.1).
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39 CANONICAL QUANTIZATION OF SPINOR FIELDS 11
39.1) Substituting in the mode expansions for ¥ and ¥, we have
Q=5 [y’ e (b0 ya ()™ + o (90 ()
N < (0P )™ + dl (P (P (39.41)

Note that this is the same as the first equality in eq. (39.21) for H, except that (1) a factor
of w is missing and (2) the df(p) term has a plus sign rather than a minus sign. Thus we
conclude that the final formula for @ is also the same, with these changes, and so

Q=3 [ sl + d.dp)]
= Z /dp (p) — dT( )ds(p )} + constant . (39.45)

39.2) We have
T ®)0) = [ dw e LT (@) u(p)|0)
= [ e 11, @) us(p)0)
= [ e (2T @) s (p)0) (39.46)

where we used J,|0) = 0 in the second line. Barring [U, M*| = —i(zFd” — xVOM)¥ + SH'W
yields [MH W] = i(xHd” — 2 O*)¥ + WS and so

7,01 (p)]0) = / d " [i(a' 07 — 220" (2) + ()51 Ous(p)0) (39.47)

For p = pz, we can integrate by parts in the first term and get zero (more precisely, a surface
term that we assume vanishes via suitable boundary conditions at spatial infinity). In the
second term, we use 51279 = 79512 and uy(p) = exp(inK>)u,(0) with K* = £v340. We have
(512, K3] = 0, and so S™2uy(p) = exp(inK?3)S12uy(0) = +3sexp(inK>)us(0) = +3sus(p).
This leaves

TH@0) = +s [ dr e Tay u,(0)0)

= +1s0i(p)[0) . (39.48)
Similarly,
1. (p)[0) = /d P73 (p)r 0 T, U (2)[0)
= [ e o) 1 w@)] o)
_ / & 7, [z'(xla2 — 220U () - 52U ()]|0)

_ / & )70 5120 (2)[0) (39.49)
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We have T,(p)7°S'? = 512990,(p) and S127%0,(p) = 7 exp(inkK?)S*2v,(0) = —157%v,(p).
Therefore

LAl(©)0) = §5 [ d e 5,0 W()0)

= 1sdi(p)|0) . (39.50)
39.3) In problem 3.3, we showed that U(A) ta(k)U(A) = a(A~'k) for a scalar, where a(k) is the
coefficient of ¢’* in the mode expansion. Since by (p)uy (p) is the coefficient of e* in

the mode expansion of a Dirac or Majorana field, we similarly have
U(A) 'S oby (P)us (P)U(A) = D(A)Y yby (A p)uy (A~ p) (39.51)

where the matrix D(A) comes from the transformation rule for ¥(z). Now multiply on the
left by Ts(p) and use eq. (38.17) to get

U(A)"bs(p)U(A) = ¥y Resr (A, p)bs (A 'p) (39.52)
where
Rys(A,p) = o= Us(p)D(A)uy (A 'p) . (39.53)
Similarly, from the coefficient of e=?* we get (for a Dirac field)
UA)dl(p)U(A) = Sy Ry (A, p)dL, (A'p) (39.54)
where
Riy(A,p) = —5-75(p)D(A)vy (A~ 'p) . (39.55)

To see that eq. (39.55) is the complex conjugate of eq. (39.53), we start with eq. (39.55), and
take the complex conjugate to get

Rss’(A7 p) = _QL Es(p)D(A)'Us’(A_lp

= (A™'p)
= _2L Vg (A_lp)D

= +g5; Ts(P)D(A)uy (A 'p) (39.56)

where the last line follows from egs. (38.34), (38.36) and (38.37); see also problem 40.1.
Eq. (39.40) then follows as in problem 3.3, but with the spin index acted on by R, (A~1, p).

39.4) a) Using eq. (39.51), we have
UM @UW) = [ dp U5 bu(p)us (pIU(A) €7
= D(A) [ dp S, (A pu (A p) e
= D(A) [ dp b (p)us(p) 4

= D) [ d e p) 4
= D(A)TT(A ), (39.57)
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where the third equality follows from changing the integration variable from p to Ap, and using
the invariance of dp. The fourth equality uses (Ap)z = A p¥z, = p"(A™1), 'z, = p(A~ ).
The same steps work for U~ (x).

b) [ (2)]f = ¥ (2)5 = Efdpr Us(p)Be™ " = Zslf@bi(l))v;r(p)cﬁe_i’“ = [ (x)]"CP.
c) We have

(W (2), 05 () = /@@; b, (6]t (P (p) 5 €/F5—7)

= Z / dp us(P)avs(p)g €7V . (39.58)
Now we use vT(p) = —i(p)C t:) get
W@ V5 W)l = — [ dp S (P)T(p)Clas 7
= — [ b [(~#+ m)Clay )
= [, + m)Clas [ dp e

= —[(id, + m)Clap C(r) , (39.59)
where 72 = (z — y)? > 0 and C(r) = mK;(mr)/472r; see section 4.
d) Swapping = < y and « < 3 in the second line of eq. (39.59), we get

W (y), U (@) = — / dp [(—f + m)C)ga P . (39.60)
Using C* = —C and (4#C)T = CTy*T = (—=C)(—C~14#C) = 4#C, we find that [(—p+m)Clga =
[(=# —m)Clap. So

W (y), s (@)= = - / 0 (= — m)Clag =Pz

=+, + m)Clag [ dp e (30.61)

0

Since (z — y)? > 0, we can work in a frame where z° = y°; then p(z — y) = p-(x — y), and

we can change p to —p in the integrand to get
(U5 (y), U5 (2)]5 = +[(i, +m)Clag / dp ¢P(e=)
= +[(i@, + m)Clag C(r)
= —[Wl(2), 95 ()]s - (39.62)

) We note that [ (2), W3 (), (5 (2), 5 () [ (2), T (), (W5 (2), T (9). vanish
because [b,b]+ and [bf, b]+ vanish. Therefore, with ¥(x) = ¥*(z) + AV~ (z), we have

[Ta(@), o)z = [¥q(2), A5 (y)l% o (), T ()5
Vo (

N+
= AW (@) 5 )l F AL (), ¥ @)
A 03 ) (39.63)
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where we used [A, B]+ = F[B, A]+ to get the second line, and eq. (39.62) to get the third.
This can vanish if and only if we choose the lower sign, that is, if we use anticommutators.
We also have

@), U5 ()l = > / dpdp' [bs(p), bl ()] s ()T (p') €1F*—7'Y)

= / dp 3 us(p)alis(p)g €Y
- /2{} (= + m)ag €PEY)
= (i), +m)ag C(r), (39.64)

and

0o (2,05 (] = 3 [ dpdp! [B(0), b ()] vs (0o (B =00

=¥ / dp Y5vs(p)aTs(p)g e P

=5 [dp (4= m)age

= £(id, +m)ap C(r) . (39.65)
Therefore

[Ta(@), Ta(y))g = [TF (@), 5 ()]s + AP[P5 (2), Ts ()]
= (1 £ NP, +m)as C(r) , (39.66)

which vanishes only for the lower sign (anticommutators) and || = 1.
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40 PArITY, TIME REVERSAL, AND CHARGE CONJUGATION

40.1) We have PIWAUP = UBABY, where A = S = Lyly” or A = iSMy5 = —Lyly s
(with p # v). Using 87" = —y'8, 7" = 1°6, and * = 1, we have By'773 = ++'77 and
B7°~ 3 = —y%4%. Therefore

PYUSHUP = +PH, PV, TSP (40.49)
Using 375 = —750, we have 37997958 = —7"77y5 and 37°7'y53 = +9"4"75. Therefore
PY0iSH U P = —PF, P, UiS, v . (40.50)

We have T-'WAUT = WAY, where we have defined A = 5C 1A% Cs. Note that ZE — AB.
From eq.(40.40), we have v# = —T*",y” and iy5 = —ivys. Therefore SW = —gyiy” =
—TH,T",5°% and SHirys = Shjryg = +TH,T" ;5" 1vs, and so
TYS™YT = —TH, T, SV
T iS5 UT = +TH, T, WiSF7 v . (40.51)
We have C"YWAUC = TCATCY, and C~H(y#4")TC = C Ly Ty1TC = (C~I4¥TC)(C™IyH7C)
= (=7")(=A") = y"y" = —y#y" for pu # v. Using C~195C = 75, we have C~1(79775)"C =
—H~¥Y~s5 for  # v. Therefore
CSMIC = —USHT |
CIWiSH s UC = —TiSH 5 . (40.52)
Since both are odd under C', both must vanish for a Majorana field. Under CPT, we

have (CPT) " USWUCPT = (TP)*,(TP)" s ¥S* V. Since (TP)*, = —6",, we see that
(CPT)""US"WWUCPT = US*W. The same applies to W.S*iy;W.
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41 LLSZ REDUCTION FOR SPIN-ONE-HALF PARTICLES
41.1) From problem 39.3, we have (p, s,q|U(A) = >, Rss (A, p)(A~1p, s, ql, s0

(. 5,9/¥(2)[0) = (p,s,q|U(MUA) " (2)U(A)U(A)~]0)
= Yo Rsy (A, P)D(A) (A" p, 8", q[ T (AT 2)[0) . (41.31)

Similarly

(p,5,q[¥(2)|0) = {p, 5, q|UMNUA) " W(2)UMUMA) o)
= Yo Res (A, p) (A p, 8", q[U(A12)[0) D(A) . (41.32)

Setting ¢ = — in eq. (41.31) and using eq. (41.24) on each side of eq. (41.31), we get
vs(p)e " = 3 Ryo (A, p)D(A)vy (A" 'p)e P . (41.33)

To verify that vs(p) satisfies this equation, we first cancel the e~"% on each side, and then
use the the second line of eq. (39.56), Rsy (A, p) = — 5Ty (A~1p)D(A)vs(p), to get

vs(p) = — 553 D(A)vy (A p)T (A~ p) D(A)vs(p)
L o D(A)(—A~ p—m)D(A)vs(p)

— 5 (—#—m)vs(p)

g (—m—m)vs(p)

vs(P) - (41.34)

~2

[~

[~

<<

Note that if we replace vg in eq. (41.33) with ug, the formula is not satisfied. Thus we have
verified eq. (41.24).

Setting ¢ = + in eq. (41.32), and using eq. (41.25) of eq. (41.32), we get

Ts(p)e”P* = 3 Roo (A, p)Ty (A p)D(A)e % . (41.35)
To verify that Ts(p) satisfies this equation, we first cancel the e =% on each side, and then
use eq. (39.53), Ryy (A, p) = 5 Us(p) D(A)uy (A™'p), to get

2 [

Us(p) = 53 oTs(P)D(A)uy (A ')y (A 'p)D(A)
= oL, (p)D(A)(— A~ +m)D(A)

2m

-~

[~

<<

us(p) - (41.36)
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42 THE FREE FERMION PROPAGATOR

42.1) Multiply eq. (42.12) for S(x — y) on the right by C and take the transpose. In problem 39.4d
we showed that [(—¢ + m)C]T = (—p — m)C. If we then take p — —p and = < y, we get
—S(y — x)C. Since C~! = —C, this verifies eq. (42.24).
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44

43 THE PATH INTEGRAL FOR FERMION FIELDS

FORMAL DEVELOPMENT OF FERMIONIC PATH INTEGRALS

74



Mark Srednicki

Quantum Field Theory: Problem Solutions 75

45 THE FEYNMAN RULES FOR DIRAC FIELDS

45.1) From section 40 we see that UV is even under P, T, ad C, while i¥~5¥ is odd under P and
T and even under C'; in each case ¢ must have the same properties for the interaction term

to be invariant.

45.2) For ete™ — ete™, we have

-p1 =P —p1 —Ph
—_—— —_——
Yp1—py — Yp1I—ph
/ /
—p2 P2 —p2 D1
, 1 e[ (@) (@avy)  (B1v) (Tavy)
ZTE+E+_>5+€+ = —~(’L ) 5 5
! —t+M —u+ M
For pp — eTe™, we have
k1 P ko I
o O
upll—k‘l + kkfl—pé
ST TRty
ko —P k1 —ph
T _l( )2—/ _ﬁyl_‘_kl_‘_m _kl+¢l2+m
Tppete- = 7(19)° W1 | =77 prvarip

/
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46  SPIN SUMS
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47 GAMMA MATRIX TECHNOLOGY

47.1) If p = v, then y#+" = +1, and we get Tr~ys = 0; if u # v, then y5v#v"” x ¢g°v7, where p, v, p
and o are all different; in particular, p # o, so Tr[y*77] = 0.

47.2) We have

Ydhy, = (=" — 2a") (=, f — 20,)
= @yl + 248 + 248 + 4(abd)
= 4(ab) — (d—4)d} . (47.22)

and

VPt = (=" — 20" )P(—=vuf — 2c,)

V' Wyud + 20dé + 24P + 4(ac)p

(d—2)dl¢ + 2Pg¢ + 20 ¢f + 4(ac)p

(d=2)db¢ + 2Pg¢ + 2[d¢ + 2(ac)]p

(d—2)dl¢ + ¢ — 2¢4p

(d—=2)dp¢ + 2[—p — 2(ab)]¢ — 2¢4p

(d—4)dl¢ — A(ab)¢ — 244

(d—4)dh¢ + 2¢ [—2(ab) — df]

2 + (d—4) e . (47.23)
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48 SPIN-AVERAGED CROSS SECTIONS

48.1) (¥ Computes gamma matrix traces for the process 1+2 -> 3+4.
The format is, for example, tr[(-pl+mixi).(-p2+m2*i)].
Note that * is used to multiply a matrix by a number,
and . is used to multiply two matrices.
Do not forget the . between matrices! Do not forget to write mass terms as m*i !
(If you do, the program will give you an incorrect answer without warning.)
Terms with gamma matrices with contracted vector indices can be written as
Sum[tr[ ... gllmul]l ... gllmul]l ... 1,{mu,4}]//Simplify.
Do not use i or m or any other already named variable as an index! *)

(* the gamma matrices *)
i = IdentityMatrix[4];

go = {{ 0, 0,1, 0},{0, 0, 0, 1},{ 1, 0, 0, 0},{ 0, 1, 0, O}};
gt = {{o0, 0,0, 1},{0, 0, 1, 0},{ 0,-1, 0, 0},{-1, 0, 0, O}};
g2 = {{ 0, 0, 0,-1},{0, 0, I, 0},{ 0, I, 0, 0},{-I, 0, 0, 0}};
g3 ={{o0,o0,1,0},{0, 0, 0,-1},{-1, 0, 0, 0},{ 0, 1, 0, 0}};
gs = {{-1, 0, 0, 0},{0,-1, 0, 0},{ 0, 0, 1, 0},{ 0, 0, 0, 1}};

g = {g1,82,g3,Ixg0};

(* Particle energies in the CM frame *)
el = (s + m172 - m272)/(2 Sqrtls]);
e2 = (s + m272 - m172)/(2 Sqrt[s]);
e3 = (s + m3°2 - m4°2)/(2 Sqrtls]);
ed = (s + m4"2 - m372)/(2 Sqrt[s]);

(* Magnitudes of 3-momenta in CM frame; k2=kl and k4=k3 *)
k1 = (1/2)Sqrt[s-2(m1°2+m2°2)+(m1"2-m2°2)"2/s];
k3 = (1/2)Sqrt[s-2(m3"2+m4"2)+(m3°2-m4"2)"2/s];

(* 4-momenta dotted into gamma matrices; th is the CM scattering angle *)
pl = -elxg0 + klx*g3;

p2 = -e2xgl0 - klx*g3;

p3 = -e3*g0 + k3*(Sin[th]l*gl + Cos[th]l*g3);

p4d = -e4xg0 - k3x(Sin[th]l*gl + Cos[th]*g3);

(* Helicity 4-vectors dotted into gamma matrices; MASSIVE PARTICLES ONLY *)
hl = (-k1*g0 + el*g3)/ml;

h2 = (-k1*g0 - e2xg3)/m2;

h3 = (-k3*g0 + e3*(Sin[th]l*gl + Cos[th]*g3))/m3;

h4 = (-k3*g0 - e4*(Sin[th]l*gl + Cos[th]l*g3))/m4;

(* ac = th in terms of the Mandelstam variables s and t *)
ac = ArcCos[(t - m1°2 - m3"2 + 2 el e3)/(2 k1 k3)];

(* Traces in terms of the Mandelstam variables s and t *)
trx] := Sum[x[[j,j11,{j,4}1/.th->ac //Simplify
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48.2) From eq. (45.23), we have
R R e [ sl
Tete—pp =90 i mverpe el U8 (48.31)
where t = —(p1 — k})? = —(pa — k5)? and u = —(p1 — k$)?> = —(p2 — k})®. We can use
—pur = muy to simplify this to
O TH 4+ 2m L +2m
T:g%leterz Zerz}ul. (48.32)
We then have B 4o B, 42
— _ + 2m + 2m
T=g" ul{_lez _Z+m2}v2. (48.33)
Therefore
2 94 / /
TP = + o g T (2m) (s + 2m) a8y + 2m)
gt
+ m? e [(Uz?&)(% + 2m) (ur T ) (¥ + Qm)]
94 / /
iy T T+ 2m) ) (8 o+ 2m)
4
g — _
T T =) T | (voD) (K + 2m) (wr ) (5 + 2m))| - (48.34)
Averaging over the initial spins, we get
P > <(I)uu> <<I>tU> + <<I>ut>
TP = 4[ (o } 48.
{71 =g m2—102 " (m2—w?  (m2—t)(m?—u)]’ (48.35)
where
(@u) = 3Tr|(—#h —m)(Ky +2m) (= + m) (¥ +2m)| ,
(@) = 3T [(=ghy — m) (ks + 2m) (=) + m)(f) +2m)]
(D) = 1Tr| (= = m) (1 + 2m) (—y + m) (5 + 2m) | ,
(@) = Tx[(—hy — m) (ks + 2m) (—h + m) (8, + 2m)] (45.36)
We have
(Pu) = TP 1] + 3m® Tedp iy + 20, K0 + 26, K — 2001 — 25,01 — K HL] — m® Tr l
= 2(p1ky) (p2k) — (prp2)ky® — m® (4pips + Ap1ky — dpoky — K1) — 4m*
= %(t—m2—M2)(u—m2—M2) - %(8—2m2)M2
— m2[A(m?—3s) + 2(t—m*—M?) — 2(u—m*—M?) + M?)] — 4m*
= —1[—tu+m*(9t +u) + Tm* — 8m*M? + M| (48.37)
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and

(Dr) = FTx[poli o) + §m® Te[Ap iy + 26, 11 + 281 Ko — 2001 — 20,05 — i) — m* Tr 1
= (p1k1)(p2ks) + (p1ks) (p2k)) — (p1p2) (K1k3)
— m%(4p1pa + 201k} + 2p1kh — 2pok) — 2pokh — Kikb) — 4m*
= i(t—m2—M2)2 + %(u—mz—Mz)2 - i(8—2m2)(s—2M2)
- m2[4(m2—%8) - (M2—%s)] — 4m?

= —3[tu+3m*(t +u) + Im* —8m*M*> — M"] . (48.38)

The extra factor of one-half compared to the crossing-related process e”¢p — e~ arises
because we are summing (rather than averaging) over the final electron spin in the latter
case.

48.3) From eq. (45.24), we have

o[ (Wiu1) (Wug) — (Ugur)(Wjuz)
T*e*—>e*e* = |: —t+M2 —U+M2 ) (4839)

where t = —(p; — p})? = —(p2 — ph)? and u = —(p1 — ph)? = —(p1 — k). We also have

= o[(mu))(uauy)  (Trus)(wauy)
T=yg [ S | (48.40)
Therefore o b+ B o
7]? =g 28_8 2~ 2_St t28_ + 22 2 | (48.41)
(M2 — ) (M2 —s)(M?2—1t) (M?—1t)
where

P,y = Tr ulﬂlu/ﬂ/ Tr ’LLQEQU/U/
1U1 2Ug |
b= Tr ulﬂlu'U' Tr ’LLQEQUIU,
2 U U]
®y, = Tr [ulﬂluéﬂéwﬂgu'ﬂﬂ ,
&, = Tr | T, T usiouh s | - 48.42
1Uy 2 U

Averaging over initial spins and summing over final spins, we get

(u) = FTr | (=pytm) (4 +m) | Tr| (o tm) (—pf+m)] (48.43)
(Pu) = § T (—phy+m) (—fs+m)| Tr| (=) (=4 +m))| (48.44)
(@) = FTe[(— +m) (—phtm) (—pp+m) (—{+m)| (48.45)
(Put) = LT[ (=) (—p{+m) (—y+m) (—pa-+m) | (48.46)
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48.4)

We get (@) from (Py) and (P,;) from (P,,) by swapping p) < ph, which is equivalent to
swapping t < u. Computing the traces, we find

(Py) = (t—4m?)*, (48.47)

(Dp) = —Ftu+ 2m?s . (48.48)

a,) p1
A

—P2

For notational convenience we omit primes on the final momenta. The amplitude is then
T = guivy, and so T = gvaus, [T|* = g* Trfu@ivatol, (|T°) = g7 Te[(—,+m)(—py—m)] =
g% (—4p1py — 4m?) = 2¢%(M? — 4m?).

Using our results from problem 11.1b, we have T' = (({|T|?)/16xM)(1 — 4m?/M?)'/? =
(g M /87)(1 — 4m?/M?)3/2,

b) From eq. (38.28), with spin quantized along the z-axis we have

(1= s178) (= + M),
(1= s2758) (= —m) , (48.49)

and we take p1 = —po = pZ with p = %M(l — 4m2/M2)1/2. Thus we have

— 1
uru = 3

— 1
V2V2 = 3

’7’2 = 92 Tr[ulﬂlvﬂg]

= 39 Tr[(1 = s175) (=, +m) (1 = s275) (—y — m)] - (48.50)
Since a trace with a single 5 and three or fewer gamma matrices vanishes, we have
71> = 39° Te[(—4, +m)(—#y —m) + s1sa(vs) (41 +m) () (= —m)] . (48.51)
Using y5¢ = —¢y5 and 72 = 1, we have
|T1? = 19° Te[(—4 +m)(—py — m) + sisof(—hy — m)¢(—ofy —m)] - (48.52)

Then using ¢} = —p¢ — 2ab along with zp; = 2ps = 0 and #f = —2? = —1, we have

|T|2 = %92 Tr[(—ﬁl + m)(—ﬁfz —m) — 3132(‘?1 + m)(—ﬁfz —m)]
= 197 (1 + s182) Tr[(—f; +m)(—py — m)]
= 19°(1 + s182)(—4p1ps — 4m?)
= 3% (1 + s189)(M? — 4m?) . (48.53)

This vanishes if s; = —sg or if M = 2m. Reason: since YW has even parity, so must ¢. An
electron-positron pair with orbital angular momentum ¢ has parity —(—1)5 . Thus ¢ must be
odd. A particle with zero three-momentum cannot have nonzero orbital angular momentum,
so |7|? vanishes if M = 2m. Also, since the initial particle has spin zero, the total angular
momentum must be zero. Thus there must be spin angular momentum to cancel the orbital



Mark Srednicki Quantum Field Theory: Problem Solutions 82

angular momentum, and so the spins must be aligned; thus |7|* vanishes if the spins are
opposite.

c¢) For helicities s; and sq, we have

p1 = (E,0,0,+p) ,

p2 = (E,0,0,—p) ,

= (p,0,0,+FE)/m

S 0,0,—E)/m (48.54)
)

with F = %M and p = %M(l — 4m2/]\42 1/2 We have z1p; = zops = 0, and so

TP = 197 Te[(1 = s1520) (= + m)(1 = s27525) (—sfy — m)]
= %92 Tr[(—ﬁﬁ + m)(_ﬂ2 —m) + 3132?«41(—% - m)fz(—ZjQ —m)]
= %92 Tr[(—ﬁﬁ + m)(_ﬂ2 —m) + 3132?«41(—% - m)fz(—ZjQ —m)]
= —g*(p1p2 + m?) + g*s182[(21p2) (22p1) — (2122) (p1p2) + mP2129] . (48.55)

From eq. (48.54), we see that z1ps = 20p1 = —2Ep/m and 2122 = p1p2/m? = —(E? + p?) /m?
Plugging these in, we find

1T = 39°(1+ s1s2)(M? — 4m?) . (48.56)

There can be no orbital angular momentum parallel to the linear momentum, and so the z
component of the spin angular momentum must vanish. The total spin along the Z axis is
51 — s9, and so the helicities must be the same to get a nonzero |7 |2. Parity again explains
why [T]2 =0 if M = 2m.

d) Now the amplitude is 7 = igti15v2, and so 7 = iglaysuy, |T|? = —g? Tr[vaToysuiTyvs],
(ITP) = —¢* Tr[(~#y—m)y5(—#+m)ys] = —g° Tr[(—pfy—m) (#, +m)] = —g*(dp1p2 — 4m?) =
2¢g2M?. This is larger by a factor of M?2/(M? — 4m?). It is larger because iUy5¥ has odd
parity, and therefore so must ¢. Thus the orbital angular momentum of the electron-positiron
pair must be even, and in particular must be zero, since £ = 2 or larger could not be cancelled
by spin. With zero orbital angular momentum, |7|? need not vanish for zero electron three-
momentum, leading to a larger decay rate.

e) Redoing part (b) yields

T = =30 Tr[(1 = s175) (—#hy + m)ys(1 — s275) (—p, — m) — 75]
= —1° Tr[(1 = s1%) (=) +m) (1 + s275¢) (B — m)] (48.57)

Comparing with the second line of eq. (48.50), we see that eq.(48.57) has an extra overall
minus sign, sy — —sg, and po — —py. Therefore, comparing with the third line of eq. (48.53),
we get

v
v

]7]2 = %g (1 — s1592)(4p1p2 — 4m2)
G?(1 — sys9)M? . (48.58)

l\JI)—l |

This vanishes if s;1 = so. We know the electron-positron pair has even orbital angular mo-
mentum, and the total angular momentum must be zero. The only possibility is £ = 0 and
s =51+ 83 =0, so |7|? vanishes if s; = so.
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Redoing part (c) yields the same changes. Therefore, comparing with the last line of eq. (48.55)
yields

17> = ¢*(—pip2 +m?) + g*s152[—(21p2) (22p1) + (2122) (P1p2) + m>21 29
= 2g%(1 + s1s0) M*. (48.59)

As in part (c), there can be no orbital angular momentum parallel to the linear momentum,

and so the z component of the spin angular momentum must vanish. The total spin along
the 2 axis is s1 — s2, and so the helicities must be the same to get a nonzero |7 |?.

48.5) Let g = ¢1Gr fr; the vertex factor is then (ig) (ik, )y*(1—v5) = —gk(1—~5), where k is the four-
momentum of the pion. Thus we have i7 = —gu; f(1—5)ve, where p; is the muon momentum
and py is the antineutrino momentum. We now use ¥ = g, + py, Po(1—75) = (1+75)ps,
Wy, = —myay, and Povg = 0 to get T = —igm, 1 (1—75)ve. Then T = +igm,, (1475 )u1,
and |T|* = g*m?, Tr[uit; (1—75)v202(1475)]. Summing over final spins yields

(T = g*mpTe[(— ) (1=75) (— ) (1475)]
= g*my, Te[(— g +my) (— ) (1475) (1475)]
= 2g°mj, Te[(—py +my) (=) (145)]
= 292mi Tr[ﬂlljz]

i
= 4¢°m’, [~ (p1+p2)® + P + p3)

= 4g°m;, (k> + pi + p3)

= 4g*m’, (m2 —m2 +0) . (48.60)

We then have I' = (|7 |?)|p1|/87mm2, and |p1| = (m2 — mﬁ)/2m72” S0

2
LTI 212
I'= e (mz —my,)”. (48.61)
Using T' = fic/er = (1.973 x 107 GeV em)/(2.998 x 10Y ecm /5)(2.603 x 1078 s) = 2.528 x
10717 GeV, we find g = 1.058 x 1076 GeV, and so f; = 93.14; after including electromagnetic
loop corrections, the result drops slightly to fr = 92.4.
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49 THE FEYNMAN RULES FOR MAJORANA FIELDS

49.1) a) The hermitian conjugate term is /2eE, WPy X + V2eEg WP, X.

b) The contributing diagrams are

P p'l Y41 p'z
—_— —_—
YpI-p) — YD1—Dh
—<—l—<—, —<—l—<—/
—p2 D2 —p2 D1

where the exchanged scalar can be either E;, or Ey. The arrows are drawn so that we use our
standard conventions for the Dirac electron-positron field; reversing the lower arrow on each
diagram and comparing the two shows that the relative sign is negative. The amplitude is

T — 962 [(ﬂﬁpLul)(@PRUé) (@ Pu) (D2 Prvt) n (@) Prur) (02 Pvy) (UépRul)(@PL’Ui)}
M2 —t M2 —u M2 —t M2 —u ’
(49.10)
c) In the limit |t|, |u| < M? = M2 = M2, we have
2¢?
T=13p5 [(ﬂ’lPLul)(ﬁgPRvg) — (W Pouy ) (U2 Prvy) + (W) Prua ) (T2 Povy) — (H’QPRul)(ﬁgPLv’l)].
(49.11)
To facilitate squaring and summing over spins, it will be convenient to rewrite everything in
terms of u spinors by using v, yv' = (VP zv')" = VTP 0" =w/C I PI.C u = —u' P, qu,
where the last equality follows from C™' = —C and C~'v5C = 5. We then have
2¢?
T = — 5 |(@ Pon) (@ Pruz) — (@ Py ) (@5 Prws) + (@) Pron) (@5 PLuz) — (P ) (@4 Pru)|
2¢?
- - [t — e+t — ] - (49.12)

Barring, we get

— 2¢2
T = 7 |(@Puey) (@2Pdy) — (i Pruy) (@ Poh) + (@ Puath) (@ Pry) — (@ Puy) (@ P
2e2 1 _

Then we have

S I S
|T)" = A oty — toug + it — toug + (8 < u)) + (L < R)|. (49.14)

We can write

tuty, = Tr[(ww) Pe(uyah) Py] Trl(ugtin) P (ubuy) Py (49.15)
touy, = Tr[(uity) Pe(u)a}) Pa(uglin) Py (ubuh) Pyl (49.16)
tuty = Tr[(urty) Pr(uyah) Pe) Tr[(ugtiz) P (uyuh) Py | (49.17)
toug = Tr[(ury) Pe(uya)) Py (uotin) Py (ubth) Py (49.18)
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Averaging over initial spins and summing over final spins, we get

(futn) = TTe[(—4) Pa(—=#1+m) B] Te[(— o) P (=P +m) Pr] , (49.19)
(Tru) = FT[(—4)) Pu(=41+m) Pa (=) Po(—#5+m) L] | (49.20)
(tutn) = $Tr[(—py) Pa(—p1+m) Pa) Tr[(—gy) Pu(—ph+m) P] , (49.21)
(frun) = 1Te[(=#) Pa(—#1+m) Pu(—) P (=3 +m) Pr] | (49.22)

where m = my is the photino mass (and we neglect the mass of the electron). We use
PPy = Py, PﬁR = PR, PrP. =0, and the cyclic property of the trace to get

(fute) = FTe[(—p) (—#1+m) P Tr[(—py) (—po+m) Pe
= 1—16 Tr[p, 1] Trlpyp5]
= (p1p1)(p2ph)
= Lt —m?)? (49.23)
(trun) = 1Tx[(=p)) (=1 +m) (=) Pu(—p5+m) P.]
= m Tr[(—¢)) (=1 +m) (—1y) P.]
= 17” Tr[]/‘lljﬂ
= —im*(p1p2)
= %m28 , (49.24)
(trtg) = 0, (49.25)
Frug) = 0. (49.26)
Plugging these into eq. (49.14), we get
o
(IT1) = 372 [ (¢ = m*)? = m?s 4 (t = ) + (L = R)|
= % [(t —m?)? 4 (u —m?)? — 2m2s} . (49.27)
The cross section is
do L JIre (49.28)

dQov  64m2s ’pl‘
with [p1| = 252 and [p}| = 1(s—4m?)'/2. Also, t—m? = 2p1p| = 2B, F} +2|p1||p}| cos 6 =

— 55+ 3[s(s—4m? )]'/2 cos 6, and similarly v — m? = —3s — %[s(s—4m2)]1/2 cosf. Plugging
these in, we get
do et 2/.13/2 2
s(1 —4m*/s)°* (1 4 cos*0) . (49.29)

dQcw  64m2MA

The (1 — 4m?/s)3/? threshold behavior is characteristic of a final state with orbital angular
momentum ¢ = 1, as we saw in problem 48.4. The 1 + cos?§ angular distribution is also
characteristic of £ = 1, since 1 +cos?0 o 3,,_ 01 Yim(0, #)|?; we say that this is a p-wave
process.
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50 MASSLESS PARTICLES AND SPINOR HELICITY

50.1) a) —p = > us(p)us(p) = u+(P)u+(p) +u—(p)u-(p) = [p)[p| + |pl(pl-

b) We have
7 (0) (—F)us (p) = [0/ (1K) K] + K1 (k1) ) = 0+ [ K1k p)
T (p') (—K)u—(p) = (B'|(|k) k] + [K)(k])[p] = (0 k) kp) + 0,
.4 (0))(—Fu—(p) = /I (1R) k] + 1K)k ) ] = 0+ 0.
7 () (K (0) = /(1K) k] + KGR Ip) = 040 (50.46)
50.2) a) We have
. sinz(%e) —Sin(%ﬁ) cos(%@)e_i‘b
fade =~ (—sin(%@) cos(30)et? cos?(30) )
—1+cosf sinfe
= tw ,
( sinfet® -1 — cos@)
0 4P pl—ip?
= ( L o 3). (50.47)
p-+p -p —P

b) From the solution to problem 38.1, with p = Z, we have

(cosh i) — (sinh 1n)os 0
exp(inp-K) = < ? ? ) o (50.48)
0 (cosh 51) + (sinh 57)03
In the n — oo limit, we have cosh 17 ~ sinh 279 ~ (E/2m)'/2. Eq. (50.48) becomes
1— 03 0
exp(inp-K) = (E/2m)"/? ( )
0 1+o03
0 0 0 0
B 0100
=QE/m)= o0 1 ) (50.49)
0 0 0O
0 0
With w.(0) given b _ p)i2| Y — p2 |1
+(0) given by eq. (38.6), we get us(p) = (2F) 1 and u_(p) = (2F) 0
0 0

For 6 = 0, this agrees with egs. (50.8), (50.9), and (50.13).

50.3) The left-hand side of eq. (50.36) is manifestly cyclically symmetric on ¢ — r — s — ¢q. To see
that it is anitsymmetric on (say) ¢ < r, we use (ab) = —(ba) to get

(pr){gs) +(pg)(sr) + (ps)(rq) = —(pr)(sq) — (pg)(rs) — (ps)(gr) . (50.50)
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and note that the right-hand side is minus the left-hand side of eq. (50.36). Thus it is com-
pletely antisymmetric on ¢, 7, s, and linear in each of the corresponding twistors. Since each
twistor has only two components, the result must be zero.

50.4) We use P.(—y) = u—(p)u-(p) = |pl(p| and —¢ = [¢](q| + |a)[q], etc., to get

Y=Yt = )l (Ial(al + la)lal) (Il + [0 (Is)Gs] =+ 1))
= 9] () [q7] (rs) [s] . (50.51)

Taking the trace gives Tr 3(1—7s)pdré = (pq) [qr] (rs)[sp]. The traces are standard and
yield 2(pq)(rs) — 2(pr)(gs) + 2(ps)(qr) + 2ie"*7pugurpso-

50.5) a) These are all vectors, and we note that no nonzero four-vector is orthogonal to every
massless four vector. Therefore it is enough to verify egs. (50.38-42) contracted with an
arbitrary massless four-vector g,. Then we set —¢ = [¢](q| + |¢)[¢|, and use the usual inner
products along with egs. (50.20), (50.21), and (50.24). For example, to verify eq.(50.38),
we use (plglk] = —(pq)lgk] = —[kq](gp) = [klglp). To verify eq.(50.40), we use (p|¢|p] =
—(pa) lap] = 2p"qp.

b) Again this follows immediately from contracting all the gamma matrices with arbitrary
massless four-vectors, and using —¢ = |q](g| + |¢)[g|, followed by the usual inner products.

¢) We have (p|y,ulq] =7 (p)7"u-(q) = ¢}04" k4. Contracting with — 2" gives

1 1 % =a 0 O-gc.
—3Plvuldy" = =505 ka| .

gHbb
0 62"05 .
= _%qbz"{a . .
ghagHbh 0
- 0 —26%.6%
- _§¢a/€a _2€dl5€ab 0

0 Ko}
o <¢*bl€b 0 )

= u—(q)u-(p) + u+(p)u+(a)
lal(p| + [p)lal - (50.52)

We similarly get eq. (50.44), and then eq. (50.45) follows immediately.
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51 LoorP CORRECTIONS IN YUKAWA THEORY

51.1) We rewrite eq. (45.2) in the shorthand notation
7 = exp(iggpméngm) exp(iﬁySyznz) , (51.55)

where 6, = 6/6n(z), 5, = §/97(x), spinor indices are suppressed, and spatial indices are
implicitly integrated; G is a spin matrix which is either 1 or iv5, depending on which version
of the theory we consider. Also, since we are interested in the fermion loop, we have replaced
(1/4)6/6J () with an external field ¢(x). A single closed loop with n external ¢ lines will
correspond to a term of the form g" o1 ... ¢y, Tr S120GS23G . .. Sy—1,,G. This is what we would
get from the Feynman rules without an extra —1 from the closed loop; the i from each vertex
is cancelled by the 1/i from each internal fermion line. To see that we do get the —1, consider
the case of n = 2; the relevant factors are i*g? ¢ (51G51)(52G52)(77x5xy77y)(ﬁZSzwnw). We
pull the d,Gé through the 7z, and allow it to act on 7,7.; we have 5252nyﬁz = —5277y52ﬁz =
—09y02..  We now have —g? @192 (61G01)7:(S22GS2w)w = —g° 102 Tr S12G S G. This
pattern persists at larger n; we get an extra minus sign from the first vertex that we pull
through, and then the remaining ones all give plus signs. (Note that we are only considering
terms corresponding to a single closed fermion loop.)

51.2) For p = p' = 0, we have N = Ny = m?vs and D = Dy = (1—x3)m? + x3M?2. Since there is
no dependence on x1 and z9, [ dF3 becomes 2 fol dzs (1—z3). Performing the integral over x3
yields

> [1 1 m?In(M/m)

iVy(0,0) = =Z4975 + 32|z T 2 IH(M/M)] V5 - (51.56)

Requiring this to equal —gvs yields

2
g
Zg=1+ =
+ 82

1 1 m?In(M/m)

- + CRE Ve i ln(M/u)} . (51.57)

This then yields

Vy (o, p) = {1 n 89—7:2 l—z o AL ln m”In(M/m) /ng< n(D/M?) + g})] }ig% . (51.58)

—m2
which is finite and independent of u.

51.3) Consider the scalar propagator. The diagrams in fig. 51.1 all contribute. The fermion loop
now has a factor of Tr S(/+§)S(f) instead of Tr S(f4})ivsS(f)iys; this changes N, given by
eq. (51.14), from (L+k)¢ + m? to ((+k)l —m?. We then find Iy 1o0p(k?) = —(g%/47%e) (k* +
6m?). The ¢ loop with the ¢* vertex obviously gives the same result as before. There is now
also a new ¢ loop diagram due to the ¢? vertex; it is given by

d ~ ~
100y = b2 / (;f; A((+R) DA (51.59)
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where d = 4—¢. The divergent part is Il 315, = k2 /16m%¢ (note that » has dimensions of
mass for d = 4). Choosing Z, and Z)s to cancel the divergences yields

2
g- 1
L, =1— 2= — 51.60
¢ A2 ¢’ ( )
A 3g% m? K2\ 1
Zy =1 _—— — — —_ 1.61
M + <167r2 or2 M2 T 16n2 ) = (51.61)

The loop correction to the fermion propagator now has a factor of S(p+f) rather than
iv5S (P+1)iys; this changes N, given by eq. (51.30), from ¢ + (1—x)g+m to ¢ + (1—z)p — m.
Thus we get X1100p = —(g%/167%)( — 2m), and so

g 1

Ty =1— -2 1.62
v 1672 ¢’ (51.62)
2
g 1
Z =14+ 2~ 1.
+ 572 (51.63)

For the loop correction to the Yukawa coupling, again a factor of iy; is removed from each
vertex. We then find that N = ¢?> + N instead of eq. (51.45); N is different, but does not
contribute to the divergent part. So
2
g 1
Zog=14+""—. 51.64
g * 812 e ( )
There is also a new diagram where the external ¢ line attaches to the ¢ line in the loop
via the new ¢? vertex; however this diagram is finite. The story is the same for the loop
correction to the ¢* vertex; the divergent part of the fermion loop diagram is the same, and
new diagrams with the @3 vertex are all finite. Thus the result is the same as eq. (51.53),

30 3¢\ 1
Zy=1 — =] . 51.65

A - <167r2 712/\> € ( )
Finally, we have to consider corrections to the new ¢? vertex. There is a fermion loop diagram

that yields

4 ~ ~ ~
Vawtaan = (D09 (1) [ G5 T SOSU+RIS ) + (ke ). (51.6)

We can set the external momenta to zero; then the numerator becomes Tr(—¢+m)? =
3m Tr Z2 +m3Trl = —12mf? + 4m?, and only the ¢? term contributes to the divergent
part. The result is then V3 yio0p = 2(—1)(¢%)(—12m)/87%e = 3g>m/n%c. There is also a
@-loop diagram, with one ¢? vertex and one ¢* vertex; there are three inequivalent permu-
tations of the external momenta and a symmetry factor of S = 2, and we have V3 ,100p =
(3)(3)(—iA)(ir)(1/i)?(1/8n%e) = —3Ak/16m%e. Thus we find

3
1
Z. =1+ < 3\ 39 m) = (51.67)

1672 w2k
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52 BETA FUNCTIONS IN YUKAWA THEORY

52.1) We have

.}
Y
Il

Il
| =
N
|>—A
|Q3
|
>
\l/
™
5
N

==, (52.17)

W =g

Inm

Tm dln

= ﬁ {lnmo — ln(Zm/Zq;)}

0 0
_ (1 —_
= (298 +)\a)\>sln(Zm/Zq,)
e

_d

_ dld [mMO —ln(Zl/2/Z;/2)]

_ 8 0 1/2 /,1/2
_<§ga +)\ﬁ) (Z /Z} )

2 2
g m A
= 1—-2— — . 2.2

872 ( M2> + 3272 (52.20)

52.2) The values of Z,, Zy, Z,4, and Zy are the same in both theories, so the beta functions for g
and A and the anomalous dimensions of the fields are the same. To compute the beta function
for k, we note that ko = ZHZ;3/2ﬂ€/2/<;. If we let ln(ZHZ;?’m) =>, K,/e", then

9 8 8

1
= 6.2 (69 Kk 4+ 3Ak — 48¢ m) . (52.21)
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The values of Z,, and Z); are different in the two theories, and we must also include the
effect of the x coupling; we have

0 0 0
— (1,2 — 1. =
TYm = (2989 +)\a)\ + 2:‘438/{) Eln(Zm/Z\p)

3g°

-5, (52.22)
0 0 0 1/2
(1, “ T 1/2
Y™ = <2989 +)\a>\ + 2/{8/{) 5ln(ZM /Z, )
2 2 2
g m K A
= =—(1—-6— — 4+ —— . 2.2
872 < 6M2> * 3272 i 3272 (52.23)

52.3) a&b) If dg/dIn p = byg® /1672 and d\/dIn = (cog* + c1Ag? + caA?) /1672, then for p = \/g?
we have (by the chain rule)

dp g9
T n = 1672 (co + (e1—2bo)p + 62,02)
2
= W@(P —p)p—p2), (52.24)

where p% = [2bg—c1 + /(c1—2bg)2—4cgca | /2¢2. Eq. (52.24) is better because it is separable.
For our case, by =5, co = —48, ¢1 =8, co = 3, and p} = (1£V145)/3 = —3.68 and +4.32.
c) Since g is small, we can treat it as approximately constant. For p = 0, 3, is positive, and

so p increases as p increases, and approaches p’ from below; p decreases as p decreases, and
approaches p* from above.

d) Since the initial value of p is greater than p?* , 3, is negative, and p decreases as y increases,
approaching p* from above; p increases as j decreases, and grows without bound.

e) Since the initial value of p is less than p*, (8, is negative, and p decreases as p increases,
growing more and more negative without bound; p increases as p decreases, and approaches
p* from below.

f&g) We have dp/dg = B,/B, = (c2/bo)(p — p%)(p — p*)/g*. This can be separated and
integrated to get

/ dp _ e [d
(p=p)p—p) b/ g
e P
pL—pt p—pt

bo

In|g/go , (52.25)

which yields the claimed result with v = by/[c2(p’. — p*)] = 5/2v/145 = 0.208. Trajectories
with p < p% flow towards (p,g) = (p*,00) as p increases (towards the ultraviolet). Trajec-
tories with p > p* flow towards (p,g) = (p%,0) as p decreases (towards the infrared). This
explains the names.
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55 ELECTRODYNAMICS IN COULOMB GAUGE

55.1) The derivation is essentially the same as in problem 3.1 for a scalar field, with an extra three-
vector index on the field and its conjugate momentum that is contracted with a polarization
vector. Using eq. (55.13), we see that the k;k; term in eq. (55.20) vanishes when contracted
with the polarization vectors; using eq. (55.14), we see that the ¢;; term yields a factor of dyy.

55.2) Again, this mimics the scalar field case done in section 3. The only difference is that there is
a product of polarization vectors that, using eq. (55.14), yields a factor of dy/) in the nonzero
term.
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56 LSZ REDUCTION FOR PHOTONS

56.1) The derivation is the same as in problem 8.4, with the polarization vectors simply an addi-
tional factor.
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58 SPINOR ELECTRODYNAMICS
58.1) From section 40, with j* = eUy*¥, we have

P—ljﬂ(x,t)P = _|_’PNVjV(_X’t) )
T (x0T = =T",j"(x,—t)
C_lju(xvt)c = —j"(x,1) .

For L to be invariant, we then must have

Pl AM(x, t)P = +PF, A (—x,t) ,
T AM(x, )T = —TH", A" (x, —t) ,
C1 A (x,1)C = —AP(x,t) .

96

(58.22)

(58.23)

58.2) Such an amplitude would come from a correlation function (0| TA#! (z1) ... A**(x,,)|0) inserted
into the LSZ formula. To see that this vanishes, we insert 1 = CC~! between each pair of
fields, and on the far left and far right. Since the vacuum is unique, it must be invariant
under charge conjugation: C~'|0) = |0) and (0|C' = (0|. Using C~'A*C = —A* from the
previous problem, we see that this correlation function is equal to (—1)" times itself, and
so must vanish if n is odd. Note that this means that the amplitude vanishes even if the
photon momenta are off shell, so it also does not appear as a subdiagram in some other more

complicated process.
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59 SCATTERING IN SPINOR ELECTRODYNAMICS

59.1) For e~y — e~ 7, the diagrams are
p1 pitke Py 1 pi—ky P

and the amplitude is

T =eelley i Ay

where

4 = Wb atm)y | (it m)
py = D) + 2 .
—Ss+m —u+m

We have A, = A,,, and so B
T = e*chell W Aspu]

Thus
’7’2 = 64(&‘;”65)(EE/EEIU)TI‘[A,W(Ulﬂl)AUp(ullﬂll)] .

Averaging over initial and summing over final spins and polarizations yields
(I71%) = & Te[Ap (= +m) A (—py +m)]

4 <q)55> + <q)5u> + <®’U«5> <q)uu>
(m? =P " w7 = )2 —w) (2= ]

=e
where

(®ss) = %Tr :’Yu(_lj1_%2+m)7u(_ﬁ’/1 +m)7u(_ﬁ1 _k2+m)’}’y(_lj/1+m)

(Puas) = FTr [ (=t +Hotm) v (= )y (= Rty (= +m)|

(@ou) = 3T [ (= Ky tm) 1~y +m)y” (—ph + Ryt )y (i +m)

(@us) = 3T [ (—hy +Hytm) v (—py +m)y (= — K tm)y” (i +m)

97

(59.26)

(59.27)

(59.28)

(59.29)

(59.30)

(59.31)

Examinging (@) and (P,,,), we see that they are transformed into each other by ko <« —kf,
which is equivalent to s <> u. The same is true of (®4,) and (®,s). Thus we need only
compute (Pg,) and (Pg,), and then take s «— u to get (Pyy) and (Py,). Using yHy, = —4,

V'Pyu = 29, and Tr[pg] = —4pq, we have

(@ss) = 3 Te[(—— Ko tm) (=20, —4m) (—f, — Ky tm) (— 21 —4m)]
= Tr[( +Ko ), (B +H2)1]
+m? Te[4(, ) (B o) — 49, (B, H) — 491 (B o) + B
+4m*Tr1
= 8[p1(p1+k2)][Ph (P1+k2)] — 4(p1+k2)*p1p]
— 16m?(p1+ka)? + 16m?p1 (p1+k2) + 16m?p) (p1+ka) — 4m?p1p}
+16m* .

(59.32)
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Now we use

(p1+ha)® = —s,
piph = —5(t—2m?) = —5(s +u)
pi(pitks) = —3(s+m?),
Pi(pithks) = —5(s +m?) . (59.33)
The last equality follows from p; + kg = p} + kb and s = —(p} + k5)?. For later use we note
also that
pr(p1—ky) = —5(u+m?),
Pi(pi—ky) = —5(u+m?),
(p1tk2) (p1—ky) = —m? . (59.34)

We then have
(Dys) = 2(s +m?)? — 2s(s + u) + 16m?s — 16m?(s +m?) + 2m*(s +u) + 16m* . (59.35)
This simplifies to
(Dy5) = —2[su — m*(3s + u) —m'], (59.36)
and swapping s and wu yields
(D) = —2[su — m*(3u + s) —m?] . (59.37)

For (®g,), we have

(Psu) = iTl"[%(%"‘%)leﬂy(%_%/2)7“#/1]

+ imz TY[VV(¢1+k2)VuZ/17V7“]

+ 1m0 Ty (B + o) vy (=Ko

+ 4m® Te[y (B +Ho) vy 91

+ 3m2 Te[y by (= )"

+ 1m0 Ty v Y

+ 1m* Tr[vy,y” (=Ko )V))

+ 3m* Ty 70" - (59.38)
We use v,pv" = 29, vipdy” = 4pa, vwipdyy” = 274y, and 4" = —4 to get

(Psu) = %Tr[ljﬂu(ljﬁ‘%)(ﬂl_%éhuﬂ/ﬂ
+ %m2 Tr[(#y+K2) v V"]
+m?(pr+ka) u Tr[(, — )"
+ 3m? Trly, (9 + )0 1)
+ 3m® Te[y v (,— o))
+m? pu Te [y ]
+ 5m? Te[y (i — o) i)
—2m*Trl. (59.39)
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Now we use v,pv" = 2 and v,p¢7" = 4pq to get

(Dou) = 2(p1+k2) (p1—ka) e[ 1]
+m? Te[(, +Ko) ]
+m? Tr[(p,— %2)(?1"‘%2)]
+ m? Te[(, +Ko) 1]
+m® Tl (i, — )]
+m® Tr[p 1]
+m® Te[(, — )]
—2m*Trl. (59.40)

Taking the traces and using egs. (59.33) and (59.34), we get

(Dsy) = 4m?[—(s+u) + 2(s+m?) +m? + 3(s+m?) + 3 (ut+m?) + 3 (s+u) + 3 (u+m?) — 2m?).

(59.41)
Using s + t + u = 2m?, this simplifies to
(®ys) = —2m>(t — 4m?) | (59.42)
and swapping s and u yields
(Byy) = —2m2(t — 4m?) . (59.43)
59.2) For ete™ — ete™, the diagrams are
p1 P p1 —P2
gpl_pll - §p1+p2
—Dy  —D2 -ry P
and the amplitude is
—t -5 ) ’
We then have o, L, ,
—t —s ) ’
Thus
(T2 = e[/t + (Bus + Do) [t5 + Dy /57 (59.46)
where
Oy = Tr(ur@ )y” (wy @) )0"] Trl(vaT2) 7, (v375) ]
D5 = Tr[(urw )y (v202) "] Tr[(w) @) )7, (v5T5) W]
Dy = Tr[(urTin)y” (v2T2) (V50 2) W (Wi T )V]
Oy = Tr[(ur)y” (w1 @)y (v502) 1 (v2T2)7"] - (59.47)
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Averaging over initial spins and summing over final spins yields

(Pu) = 3Te[(=py+m)y” (=i +m)y" ) Te[(— gy —m)y(—#o—m)w ] |

(ss) = FTe[(=p+m)y" (=g =mI ] Te[(=py +m) (= —m)w]

(@1s) = FTx[(=p+m)y" (—=phy=m)pu(—Fo—m)w (—§ 1 +m)y "]

(®st) = FTe[(—pytmIy” (=p1+m)vu(=py—m)y (~pp—m)7"] . (59.48)

We see that exchanging p} < —pa, which is equivalent to t < s, exchanges ($y) < (Pg,) and
(Dys) — (Pg). We have

(@) = L(Telpyy#1r") + m? Tely ) (el b +m? Tely] )
4

pivyt +pipy” — (pph + mz)g“”) (pzup’gy + P2, — (paph + m2)gw)

= 4[2(p115) (D p2) + 2(p1p2) (P1ph) — 2(p1ph) (2phy + m?) — 2(paph) (p1p] + m?)
+4(p1py +m?) (papy +m?)] . (59.49)

Now we use

pip2 = pipy = —5(s — 2m?)
piph = pophy = +5(t —2m?)
pivh = pip2 = +5(u —2m?) = 5(2m* — s — 1) (59.50)
and simplify to get
(Py) = 2(752 + 2st + 252 — 8m?s + 8m4) . (59.51)
Swapping t < s yields
(D) = 2(s% + 25t + 2t — 8m*t + 8m*) . (59.52)

Next we have

(Prs) = iﬁ[ﬁﬂyﬁﬂuﬂlﬂuﬂ/ﬂu]
- im2 Tr[lj17y¢27u%7 ]
- 4m 2T [y v o]
+ 3m® Ty 7]
+ %m2 Tr[y V%’Yup{z%’}’ ]
— 1m0 Ty Py i
[ ]
[

— 4m® Ty sy

+ %m‘l Ty yu1"] - (59.53)

In the first line, v Povulfon i7" = 20,057,880 = (2¢,85) (4p2p)). In the second line,
Y BV = 4pip2uy” = 4, 1y; the next five lines can be similarly simplified. In the last

line, v,y = 2v,7* = —8. Taking traces yields

(®y5) = —8(p1ph) (Pyp2) + 4m*(p1p2 + p1py — p1p} — Paph + Pip2 + Pips) — 8m* ,  (59.54)
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and plugging in eq. (59.50), we find

(®rs) = —2(u? — 8m2u + 12m?) . (59.55)
Swapping t < s, we get
(®g) = —2(u? — 8mPu + 12m?) . (59.56)
59.3) For e"e™ — e~ e, the diagrams are
p1 P p1 Ph
gm—p’l - §p1—p’2
P2 Ph P2 Py
and the amplitude is
—t —u ) ’
We then have R . R .
T =¢? {(uw ull(tumuz) _ u2_)(su2'7vul)} : (59.58)
Thus
T2 = e[/t + (Bu + Bur) /tu + Dy fu?] (59.59)
where
Oy = Tr[(wrw )v” (ui@i)y"] Tr[(uatiz) v (ug@s) V)
Dy = Tr[(ua )" (uge)y"] Tr[(ui @) v (u2ti2) v ]
Oy = Tr[(ua@ )y (ug@y) v (uli2) v (Wi @1)7"]
Dy = Tr[(wr®)y” (uy @) v (u2lia) v (w5 )] - (59.60)

(Pu) = Te[(=p+m)y” (= +m)y"] Tr[(— gy tm)yu(—#otm)n]

(Puu) = FT[(=py+m)y" (o tm)y "] Te[(=pr+m)vu( sy tm)n] |

(Pru) = FTe[(=ph+m)y" (= #otm)yu(—otm)w (—#1+m)"]

(Put) = FTe[(=+m)y" (=i +m)yu(—potm)y (—po+m)y"] . (59.61)

Comparing with eq. (59.48) for ete™ — ete™, we see that eq.(59.61) is transformed into
eq. (59.61) via pg <« —p). This is equivalent to s < u, so we need not redo the calculation;
we have

) = 2(t% + 2tu + 2u® — 8mPu + 8m?)
(D) = 2(u? + 2tu + 2t* — 8m*t + 8m*)
) = —2(s? — 8m?%s + 12m?) |

) = —2(s% — 8m?s + 12m?) . (59.62)
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60 SPINOR HELICITY FOR SPINOR ELECTRODYNAMICS
60.1) a) Using egs. (60.7-8) and —p = |p)[p| + |p](p|, we have
(qlplk]  (ap)[pk]

pueh (k) = — V2 (g k) = N (60.43)
__ laddlk) _ lapl (pF)
puet (k) = Valeh = Valak (60.44)

Setting p = ¢ or p = k makes both expressions vanish, since (qq) = [qq] = 0.

b) We need (q|v*|k] = [k|y"|q) and the Fierz identity [p|v*|q) (r|vuls] = 2[ps](¢r), both
proved in problem 50.5. Then using egs. (60.7-8), we have

[klv"|g) (d' WK (aq) [k K]

(ki) e+ W) = Tor B R ) (00.45)
, o la! k) (K le']  [aq'] (kK

50 = TR R (00:46)
, o _ [k*a) (Kd] _ (aK) [kd]

) 50) = TR e - aR ek (0047

60.2) a) If p; is the four-momentum particle j (with the convention that all momenta are outgoing),
then.zj p; = .O,. arlld so > = — >, (174 + [5]¢j]) = 0. Sandwiching this between (i and
k] yields 32;(ij) [j k] = 0.
b) Since (ii) = [ii] =0, j =i and j = k do not contribute to the sum. For n = 4, this yields
(21)[13] 4+ (24) [43] =0, or equivalently [31] (12) = — [34] (42).

60.3) Multiply the numerator and denominator of (24)2/(13)(23) by [24]%. In the numerator, use

(24)% [24]? = 53, = 523 = (13)2[1 3]?. In the denominator, use (23) [24] = —(13) [14], which
follows from momentum conservation. The result is —[13]?/[14] [24].

60.4) We have

To o =22 (24) laa| G4y + K5)[2) [31] (60.48)

[ga4] (23) s13
Using —p = |p)[p| + |p](p| in the numerator, and s;3 = (13) [31] in the denominator, we get

2 (24) ([ga1] (12) + [943] 32))

Ty =2e 60.49
o ] 25 (13) o049
a) We take ¢4 = p1, and so
24)[13](32)
T, =g 2H13E2) |
e =2 sy (1) (60-50)
In the numerator, use [13](32) = —[14] (42) = [14] (24) and cancel common factors to get

eq (60.31).
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b) We take g4 = p2, and so

(24) (21](12) +[23](32))
[24] (23) (13)
9 (24) (512 + 523)
[24] (23) (13)
o (24) (—s24)
[24] (23) (13)
24) ((24) [24])
[24] (23) (13)

T+_+_ = 262

= 2e

= 2e

:262<

(60.51)
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61 SCALAR ELECTRODYNAMICS

61.1) We have

ELEY kY kY
T:_42,ull/l 172 172 1 _uv
65152 [m2—t+m2—u+2g 5
and so )
kikS | kTkG

T = —4e’c™Pely
VE2 2 —+ T m2 —

+ %g““] )

After summing over final polarizations, we have

Kl kY kY kb 1T ki kor ik
2 4| R1R2 17 1 v 1uf2v 12 1
m4 m4 2(k1k2)2 klkg klkg
= 16¢* 1
Oc [(7712—t)2+(m2—u)2+ +(m2—t)(m2—u) m2—t m?—u

where kiks = —1(s — 2m?) = (¢t +u).

61.2) For e~y — € v, the diagrams are
ki ki+ke K| ki ki—ky K k1 K}

and the amplitude is

(2k1+k2)u(k1+k/1+k‘2)y

| (ko) 2k —1),
2

—s m?2 —u

T = 625*“6”,[
2 €2 "

— 2guy} .

104

(61.16)

(61.17)

(61.19)

We use k1+ko = kj+k to replace ki+k)+ke with 2k]+k5 and ki —kb+k] with 2k] —ko, and

then use ko-e5 = kb9 = 0 to get

» Ay k! 4K" k
T — e2€2u€5,[ 1phiy + 1pVlv _ 29ﬂ[;|

m2—s m2—u

(61.20)

Squaring, averaging over the initial polarization, and summing over the final polarization

yields
) k! B LY k / /kl
2 4| PRy 1"~ 1k 1Ry
= [m2—s+m2—u_%gw [m;—us—i_m;—u_%g‘“’
4 4 1\2 / /
m m 2(k1k kik kik
=8¢’ | — 3 T3 3 1+ (11)2 - 211 211
(m? —s) (m? —u) (m?2—s)(m?>—u) m?—s m?—u

] . (61.21)

where kik{ = £(t — 2m?) = —%(s +u). This is related by s < ¢ to eq. (61.18). There is an
extra factor of 2 in eq. (61.18) because both polarizations are summed in that case (instead

of one being averaged).
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62 LooP CORRECTIONS IN SPINOR ELECTRODYNAMICS

62.1) In momentum space. the gauge-fixing term becomes —%5‘%“1{:”171“(1{:)2,,(—1{:). Adding this to
eq. (57.3) yields —3 A, (k) (k2P (k) + £ 'kk¥) A, (—k) as the kinetic term for the gauge field.
The propagator is the matrix inverse of the contents of the square brackets. Since P*”(k) and
k*EY /k? are orthogonal projection matrices, the propagator is (1/k2)[P* (k) + ¢kHkY /k?]. In
the limit ¢ — 0, including this term in the lagrangian yields a path integrand that oscillates
infinitely rapidly whenever 0#A4,, # 0; thus the path integral vanishes unless 04, = 0, and
sothe & — 0 limit corresponds to Lorenz gauge.

62.2) Only the photon propagator is changed. Since the one-loop contribution to II*¥ (k) does not
include a photon propagator, Z3 is unchanged at one loop. The extra term (£—1)k*kY /(k?)?
in the photon propagator would add an extra term to the electron self-energy of the form

. dt  f(—g—L+m)f . ,

AX(p) = (£-1 2/ —i(AZy)p — i(AZ, 62.51

¢ (p) (g )e (271')4 ((p+€)2 + m2)(€2)2 Z( 2)% Z( )m ) ( )

where AZy; and AZ,, are the extra contributions to Z and Z,, that are needed to cancel

the extra contributions to the divergence. Combining denominators with Feynman’s formula
yields

1

((p+1)? +m?)(

= [ B 0P + mam? a4 2yl

- /dF3 (0% + 221 0p + 21p* + 1 ym?] 7

B /dF3 [(b+21p)? + 21 (1—21)p* + 23m?] 3

= 2/01 dr (1-2)[¢* + D] 7%, (62.52)

where ¢ = £ + 2p and D = z(1—x)p? + 2m?. We set £ = ¢ — xp in the numerator, and
drop terms that are odd in ¢. Then only the ¢ terms contribute to the divergence. These
terms are x(ddy + dpd + pad) + ¢(—¢ + m)¢, and making the replacement gtq” — Lq>g"”
yields @2 [z (Y + 7P+ 7 ) + (= m)v) = 163 (—4p + 2 — 4f) — 2 — 4m] =
—2¢?[(6z+2)p + 4m]. (We can set d = 4 because terms of order e will not contribute to the
divergent part.) Then we use

dq ¢ i :
/ (2m)* (¢* + D)3 ~ 8%  finite (62:53)
and 2]01 dzx (1—z) =1 and 2]01 dz (1-z)z = £ to get

62

AX(p) = —(§—1)=——
Combining this with eqgs. (62.34) and (62.35), we get
2

_ e (1 . 4
Zy =1 52 (E + ﬁn1te> +0(e"), (62.55)

(F+m) — (AZy)p— (AZy,)m , (62.54)

2
Zp =1— (3+5)% <§ + ﬁnite> +0(et) . (62.56)
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To compute the change in Z;, we can set external momenta to zero. Then we have

A% f(—f+m)y (—f+m)f
Cmi (2 +m?)2()?

IAVH(0,0) = ieAZiy" + (6—1)e / (62.57)

Only the % term in the numerator gives a divergence, so we can replace the numerator with
(") = (£?)%24#. The divergent part of the integral is then i/8m%¢, and so the divergent part
of AZy is —(£—1)e?/872%¢, leading to

ez /1 . 4
Zy=1- 5@ (E + ﬁmte) +0(e") . (62.58)
We see that Z; = Z5 for all £, and that Z; = Zy = 1 + O(e?) for Lorenz gauge (¢ = 0). This
will prove very convenient later.

62.3) The diagrams consist of a closed fermion loop with four external photons. Starting with
photon #1 and following the fermion arrow backwards, there are six diagrams, corresponding
to the six permutations of 2, 3,4. To get a divergent result, we must keep all the loop momenta
in the numerator. The divergent part of the diagram with 1234 ordering is then

. d% Tr
Ty = [ Grga ey

(62.59)

Using symmetric integration, we have (H0V0P(7 — i(ﬂ)%gwgm + g"Pg"7 + gM?¢"P), and
so Tr ¢ ffoftsftof — 21(C) Te(d V" b vt s v 2 + 80V 80 Fxvud s + 10" 827" 3t a ) -
The first and last term in the parentheses each simplifies to 4¢,¢,¢5¢,, while the mid-
dle term becomes 2¢,#:7"#5¢,7, = 8(e2e4)¢,#5. Taking the trace then yields Tr(...) =
32[(e162)(e3e4) + (e1€4)(e2e3) — 2(e1€3)(e284)]. If we now sum over the six permutations of
234, the terms cancel in pairs, and the result is zero.

If the result were not zero, we would have to add a term to the lagrangian to absorb the
divergence. Since no external momenta are involved, such a term would have to take the
form AHA,AYA,. However, this is not gauge invariant. Thus gauge invariance requires that
T4iv vanish.
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63 THE VERTEX FUNCTION IN SPINOR ELECTRODYNAMICS

63.1) a) If we have an incoming electron with momentum p and an outgoing electron with momen-
tum p’ that are attached to the same vertex, then we get a factor of u'V*u, where u = us(p)
and @’ = uy(p’). The photon momentum is ¢ = p’ — p. Since ¢*¢” terms in the photon
propagator A*(q) should not contribute, and since the photon propagator attaches to the
vertex V#(p', p), we should have ¢,u’"V*#u = 0. Using eq. (63.23), we get

0 =e(p' —p) @' [A" + B +p)" + C(p —p)'lu
= eu'[A(p' - §) + B —p*) + Cq’Ju
= eCq*u'u, (63.24)

where we used u'p’ = —mu’, pu = —mu, and p'? = p? = —m? to get the last line. We see

that we must have C(¢?) = 0.

b) Using eq. (63.16), we can make the replacement Av* + B(p' + p)* — (A + 2mB)y* +
2iBS*q,. Comparing with eq. (63.18), we see that F; = A+ 2mB and F, = —2mB.
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64 THE MAGNETIC MOMENT OF THE ELECTRON

64.1) It is easiest to use a different gauge for the external field, A = %B (—y,x,0) rather than A =
B(0,z,0). Then, in eq. (64.10), the i7?9; term (where &y = 9/dp1) becomes %1(7281 —710,).
Using uy'u = 2p'tu and Tu = 2m, this becomes —ﬁ(plﬁg — p?0;), which we recognize
as ﬁLZ acting on functions of p. Comparing with the result in eq. (64.13), we see that
(1+a/2m)S. is replaced with L. 4 (1+ «/27)S.. Then L. is replaced by its eigenvalue my,
and S, by its eigenvalue mg = +%.
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65 LooprP CORRECTIONS IN SCALAR ELECTRODYNAMICS

65.1) For vanishing photon four-momenta, and external scalars on shell (that is, k? = k’2 = k-p =
kp=K-p=FK-p =0,p?=p?=-m?), we have V§ = —e(p+ p) and V}" = —2e2g".

65.2) Define a covariant derivative D# = 0F — iKeA*, where K is an arbitrary constant. Our
results in section 58 imply that, under the transformation A* — A* — 9 T and ¢ — e el
we have Dt — e KDy Then —(DFp) D, = —0H¢1 0,0+ iKe[p!0Hp — pf (O )] AH —
K 262cpT<pA“Au is invariant. If we multiply by Z5 and compare with egs. (65.1-4), we see that
we must have Z; = K7y and Z, = K?Z,. Eliminating K yields Z, = Z12/Z2.
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66

66.1) We have

66.2) We have
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BETA FUNCTIONS IN QUANTUM ELECTRODYNAMICS

TYm

Yo

YA

847

YA

1 dnZ,
2 dlnp

1
dln L

m[mmo ~1(Zn/2)]

(% e%) Eln(Zm/Zg)

82
1 dln Z,
2 dlnp
1 1 0 0
5(—56%—)\—)\>EIHZQ
3e?

1672’
16“1123
2 dlnp
1 1 0 0
- —A—|elnZz
2< 2 “De AaA)en 3
2
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(66.33)

(66.34)

(66.35)

(66.36)

(66.37)
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Ym

66.3) We have Z3 = 1 — e%/(672¢),

the same as in problem 66.1.

Al
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Inm

dln

FiTy [lnmo—ln(le/Zl/z)}

<% — +A —> en(2}?/2,"%)

1
1672

(A —3e%) .

111

(66.38)

=7y =1—¢£e?/(8n%¢), and Z,, = 1 — (3+£)e?/(87%€). We
see that Z3 is independent of £ (to this order), and also that dependence on & cancels in the
ratios Z1/Zs and Z,,/Z,. Since the beta function is computed from Zl/(ZgZ§/2) and the
anomalous dimension of m from Z,,/Zs, these are independent of {. The results are therefore

66.4) 1/a(My) = 137.036 — (2/37)(40.07) = 128.5. The measured value of 1/a(M;) is 127.9.
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67  WARD IDENTITIES IN QUANTUM ELECTRODYNAMICS I
67.1) Making the replacement £y, — &}, the amplitude becomes

4(/€1 -kll)(kg-&‘g/) + 4(/€1 '62/)(1€2-k1/)

m2 —t m2 —u

T = —¢?

+ 2(1{71/ '62/) . (67.13)

Now we use ki-kiy = 5(t —m?) and kg-ky = &(u — m?) to get T = 2€2(ky + k1 — k{)-eo =
262 k‘éfz/ =0.

67.2) Making the replacement €11 — kf, and using —p; + k5 = po — k] in the numerator of the
second term, the amplitude becomes

_ + +m +m
T = 27, [¢ (MM L E (M%,} . (67.14)
m?2 u
We use §}§) = —k;? = 0 to remove the }} term in each numerator. Then we use (—p;+m)§| =

¥y (f+m) +2p; -k} in the first term and ¥} (fy+m) = (—py+m)§; — 2pa-k] in the second term,
followed by (p;+m)u; = 0 in the first term and Ta(—p,+m) = 0 in the second term. Then
using 2p;1 -k} =t — m? and 2py-k] = u — m?, we see that the two terms cancel.
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68  WARD IDENTITIES IN QUANTUM ELECTRODYNAMICS II

68.1) a) Consider the photon propagator, which (in momentum space) can be expressed as A" (k) =
A () + AP (B)T, (k)A (k) + ... . All terms except the first consist of Feynman diagrams
with two external photons, each attached to a vertex. If drop the first term and remove the
external photons from the remaining terms, we get the sum of all diagrams with two vertices
that have no attached photons; each of these two vertices corresponds (in position space) to
a factor of Zyj#(x). We conclude that TT* (k) 4 T1*?(k)A ., (k)II°% (k) + ... is proportional
to the Fourier transform of (0|Tj*(x)j"(y)|0).

b) We have 9,,(0|Tj*(z)5"(y)|0) = 0 by the Ward identity. In momentum space, this becomes
ke, 12 (K)[0,Y + Ao (k)Y (k) + .. .] = 0. The matrix in square brackets is nonzero in general,
and so the entire expression can vanish only if k,II*(k) = 0.

68.2) a) From eq. (62.28), we have

4
1o (#) = —ie® [ 5 ‘;4 WS+ I B(0) (68.18)
From eq (62.40), we have
I / . 3 d4£ ~ / ~ U X
Vioop (', p) = —ie / et S+ S+ Avp(0) - (68.19)

Contract this with (p —p)#, and use g’ — pf = (J'+f+m) — (J+f+m) = S(F'+f) " = S(p+f) !
to get

4 ~
D Vap o1 = =ie® [ G 50+1) = S )" Aoyl

= eX1100p(#) — €X1100p(#') - (68.20)

We have VH#(p/,p) = Ziey# + VY Joop (P's P) and S~ = Zopp+ Zpym — Y1loop(p'). Assuming
7\ = Zy, we have (p'—p)(Z1ex") = e[(Zap’ —|— Zmm) — (Z2pp + Zmm)]. Combining this with
eq. (68.20) yields (p'—p), V*(p',p) = e[S(#")~" — S(#)~'] up through one-loop in any scheme
where 71 = Zs.

68.3) An insertion of —iZye[pfd"p — (0"¢T)¢] produces a photon-scalar-scalar vertex, without
the photon. An insertion of —2iZ,e24* ¢!y produces a photon-photon-scalar-scalar vertex,
without one of the photons. The sum of these equals Z5 YZ,J#, where J* is the Noether
current. (We need to use Zy = Z?/Z5 to get this result.) Thus, the correlation function

CY(k,p',p) =iZy 7y /d4x dty d'z P =VERE (0TI (1) (y) ' (2)]0) (68.21)

can be expressed in terms of the exact scalar propagator A(p) and the exact photon—scalar—
scalar vertex function V% (p/,p) as

G4 (k.. p) = (2m)'8" (k=) [LAG)iVE (W p) FAWD)] (68.22)
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There are contributions to V3 from diagrams where an internal photon attaches to the same
vertex as the external photon; these are generated by the second term in the Noether current.
We now use the Ward identity, eq. (68.4), along with 6o = —iew and dp = +iep', to get

—0, (0| TJ*(@)p ()" (2)]0) = +ed* (=) (0] T ()" (2)]0) — e8* (z—2) (0| Tp(y)¢' (2)]0) -
(68.23)
From here the analysis is essentially identical to that of spinor electrodynamics, and we get

(=P V5@ p) = 25 Z1e[AW) T - Ap)7] . (68.24)

b) Since both V3 and A are finite, Z;/Z, must be finite as well. Since all corrections to
Z; = 1 are infinite in the MS scheme, eq. (68.24) is consistent only if Z; = Z5. In the OS
scheme, we use the fact that near p? = p’> = —m? and (p'—p)? = 0, A(p)_1 ~ p? +m? and
VE(,p) ~ —e(p'+p)* to see that we must have Z; = Zs.

c) We define

CH (') = #2522} [ d'n dly dis dho 4HN 0 O 10 @)1 () p () (2)]0)

(68.25)
This gets contributions from the exact three- and four- point vertices
p ptk P p  ptk P
We have
CH (k, K o' p) = 2m) 0t (p+k+E —p ')l.A(p')
x [V (0, p+E) LA (p+k)iVE (p+E, p)
+iVE (W, p+k ) LA (p+K )ZVs (p+k',p)
VR (kK p H (68.26)
Multiplying by k,,, and following the steps that lead to eq. (68.3), we get
kuCP (kK pl\p) = —i252 22 / By dby dbs dw ek yripe—ike
X 0, (0T () (w)p(y) ' (2)]0) - (68.27)

The relevant Ward idenitity is

— 8, (0T J* () J" (w)p(y) T (2)|0) = +ed* (z—y) (0| TJ (w)(y)et (2)]0)
—ed* (z—2) (0| TJ” (w)p(y)¢'(2)|0) . (68.28)

There is no §*(z—w) term because J”(w) is invariant under the U(1) symmetry. Plugging
eq. (68.28) into eq. (68.27) and using eq. (68.21), we get

kCi¥ (kK p',p) = Z5 Zae|CY (K, p'~k,p) — CY (K, p+E)| . (68.29)
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Now we evaluate the left-hand side of eq. (68.29), using eq. (68.26) and then simplifying with
eq. (68.24). We also use eq. (68.22) on the right-hand side of eq. (68.29). Then, after some
rearranging and use of p+k = p'—k’, we find

kuvzy(kv k/7p/7p) = Zg_lzle{vg(p+k‘/,p) - Vg(p/7p/_k/)} . (6830)

Since Zy ' Zy = Z; ' Zy, this is the same as eq. (68.17).
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69 NONABELIAN GAUGE THEORY
69.1) For A, = AZTRI’ and U = I —igh?TZ, eq. (69.9) becomes
ANTY — ANTY — igh® AL [T, Ty) — 0,0°T¢
= AVTY + g0°Ab FeT — 0,0°TF (69.26)

or equivalently
ACTY — (AS + g0 AL £ — 0,0°) T . (69.27)

We mutiply by T, take the trace, and use Tr TITS = C%, where C% is a positive-definite,
real symmetric (and hence invertible) matrix. Then we matrix-multiply by (C~1)? to get

A — AC + g0 Ab £ — 0,0° (69.28)

which is independent of the representation. (We can always choose the generators so that
C% o §%, which makes the final step superfluous.)

69.2) [T9T%, T = [T, T°|T® + T4[T*, T°| = i f(T°T* + T*T¢). Since f% is antisymmetric on
a < ¢, while T°T* 4+ T%T* is symmetric, the result is zero.
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70 GROUP REPRESENTATIONS

70.1) Contracting (T2TL)s; = T(R)6% with 6% yields (T2T%);; = T(R)6* = T(R)D(A). Contract-
ing (Tng)zg = C(R)(SZ] with (57;]' yields (Tr[{lTr[{l)u = C(R)(Sn = C(R)D(R)

70.2) a) TIN®@N) =T(A)+T(1) =T(A)+0=T(A), and TIN®@N) = T(N)D(N) + D(N)T(N) =
N+ N3 =N.
b) For SU(2), T(3)§% = (T§)4(TY)de = (—i)2gacdgbde = gacdbed  This vanishes if a # b,

since then there is no way to get both epsilons to be nonzero; if a = b = 1 (say), then
eledgled — S123.123 4 (1320132 1 4 ] =92 So T(A) = 2.

) NeN =26 (N-2)I's) ® (2@ (N-2)1's) = (2®2) ® (2N—4)2’s & (N—-2)%1’s. Using
202=301and N@N=A@1, we have A = 3@ (2N—4)2’s ® (N—-2)%1’s

d) T(A) =T(3) + (2N-4)T(2) + (N-1)>T(1) =2+ (2N-4)3 + 0= N.

70.3) a) A= [N®NJ], = [BO(N-3)1's) @3B (N—=3)1's)]s = [3®@3]s®(N—-3)3’s = 30 (N-3)3's =
(N—2)3’s.
b) T(A) = (N-2)T(3) = (N—2)2 = 2N —4.

70.4) a) D(A) = $N(N—1) and D(S) = AN (N+1).

b) A=[N®N], =[20(N-2)I's) @ (2® (N-2)1's|s = [202], ® (N-2)2s = 1@ (N—-2)2’s.

Therefore T(A) = T(1)+(N—2)T(2) = 0+(N—2)3 (N—2). Similarly, S&1 = [N® N]s =

(2@ (N-2)1's) @ (2@ (N-2)1's)]s = 2®2]s ® (N-2)2s ® (N 2)21’s =3® (N-2)2sd

(N—2)21’s. Therefore T'(S) =T(3) + (N=2)T(2) =2+ (N—-2)5 = 1(N+2).

c) Pijg = Eijwk-

d) A=[N®N], = [(3&(N-3)
1

l\DI»—l

bl

S)@ BB (N-=3)1's]s = [3®@3]a & (N—-3)3s =38 (N—-3)3’
(3) = =14 (N—=3)(+1) = N—4. Similarly, S = [N ® N
; —

1 S.

Therefore A(.A) (g) (N-3)A =
3@3ls® (N—3)3's & (N—3)21's = 6 ® (N—3)3's @
6,

);

(B ® (N=3)1's) @ 3 ® (N-3)1’s]

O wm

3
(N—3)?1’s. Therefore A(S) = A(6) + (N—3)A(3) + (N—3)2A(1) = A(6) + (N—3)(+1) +
A(6)+ N—3. To compute A(6) for SU(3), we note that A(3®3) = D(3)A(3)+ A(3)D(3)
and that A(3® 3) = A(6 @ 3) = A(6) + A(3) = A(6) — 1, so A(6) = 7. Therefore for SU(N
A(S) = N+4.

70.5) a) [Dy(ex)]ir = Ou(eixn) —itgAL(TE, or, irjopiXa, and (Tg gr, Jirjg = (Tr, )ij015+0i;(Tx, )17,
SO (T;{ll@Rz)i[’jJQO]XJ (T cp),xj + cpZ(T X)J- Comblnlng this with 9, (vixr) = (Oupi)Xx1 +
eidyx1, we get [Du(9x)Nir = (Dup)ixs + @i D)1
b) We begin With,(Du‘P)i = Oupi — ig Ay, (T%)i ‘()0] and (DMSOT)_i - 8#‘:0“ — ig{‘lZ(T%)iWTk.
Oup +ig AL (T)i' ¢, s0 o1 (Dyp)i = P Oyipi— g AL (T2) g, and (Dypt) i = (9u0')’
igAZ(Tr‘j)klngkgpi. Adding, the gauge-field terms cancel, and we get ¢ (D,); + (Dup!)iep;
©T(0,0)i + (00T )ipi = 0u(pTi;). Since pTiy; is a singlet, d,(¢Tp;) = D, (p1p;), so this is
a special case of part (a).

=+ 1

70.6) Using (T5)% = —if<®, we have (D,F,,)* = = O,k — gfePACFY = Ok, + gfabeAb Fe

pt pt
Plugging in F, = 0, A7 — 9, A}, + gfabcAZAf,, we get

(DpFyu)* = 0p(0u A% — 0, A% + gf AL AL) + g f**AD (9, AS — 9, AS, + g f°AL AL)
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= 0,0, A}, — 0,0, A},
+ g™ (0,AL AS + AL, AC + Abo, AL — ADO, AL
+ g ferepereAb AL AL (70.42)
We manipulate the first term on the second line via apAgAg = Af,apAz and f“bcAf,apAz =
— f“bCAfjapAz. Then we have

(DpFuu)a = apauAZ - auapAZ
abc b c b c b c b c
+9f (—AVOPAH + A 0,A, + A 0, A7 — Ap(‘),,A“)
2 rabcpede Ab pd pe
+ 9" LA ALAL (70.43)
If we use eq.(70.43) in D,F,, + D,F,, + D,F,,, the terms from the first line of eq. (70.43)
will cancel in pairs, as will the terms from the second line. Then the third line yields
a 2 rabcpeder oAb Ad ge b Ad pe b pd ge
(DuFvp + DyFpp + DpFy)® = g f*f (AuAuAp + A A AL+ APAMAv)
_ 2 prabcpedes Ab Ad pe e oAb qd d qe Ab
= g° fYf (AuAVAp + A7 A AL+ AHAVAP)
— g2(fab0fcde + fadCfceb + faechbd)AZAgAz 7 (7044)
and the contents of the parentheses in the last line vanish by the Jacobi identity.

More elegant method: given a field ¢® in the adjoint representation, we can make a matrix-
valued field ¢ = "1, analogous to the matrix-valued gauge field A, = A}T". Then the
covariant derivative of ¢, in matrix form, is (D,p)*T* = 0, — ig[A,,¢|. We can write
O, as a commutator [0,,y]; then we have (D,p)*T* = [D,, |, where D, = 9, — igA,.
Since F),, is a field in the adjoint representation, we have (D,F,,)*T* = [D,, F,,]. We
also have F),, = (i/g)[D,, D], so (D,F,,)*T* = (i/9)[D,, [D,, D,]]. Adding the two cyclic
permutations, the terms cancel in pairs when the commutators are written out. We see that
the Bianchi identity is essentially the Jacobi identity applied to covariant derivatives.



Mark Srednicki Quantum Field Theory: Problem Solutions 119

71 THE PATH INTEGRAL FOR NONABELIAN GAUGE THEORY
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72 THE FEYNMAN RULES FOR NONABELIAN GAUGE THEORY

72.1) This is a simple generalization of the vertices in scalar electrodynamics:
k K

Jooroseeoo i Joorizar o AN 0
ﬁl« AN
§ a b %

alu 2 v /,’ \\

ig(Ta)ij(k + k/)ﬂ —ig2(TaTb + TbTa)ijguV —Z%/\(ézl(s]k + 5ik5jl)

120
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73 THE BETA FUNCTION IN NONABELIAN GAUGE THEORY

73.1) We need Zy, Zs, and Z3. The computation of Zs and Zs are the same as in scalar electro-
dynamics, with extra group-theory factors. The extra group-theory factors are the same as
they are for spinors. Thus we have ¢? — ¢?C(R) in Z5 and €? — ¢*T(R) in Z3. For Z,
the two diagrams of fig. 73.2 contribute (with, obviously, the fermion line replaced by a scalar
line). The first again gives the same result as scalar electrodynamics with e? — g?C(R). The
second has a group theory factor that is proportional to T'(A). Thus it does not contribute
to the dependence on the representation R of the scalar. The case of no scalars must give
the same result as the case of no fermions (equivalent to R = 1), so we need not keep track
of this diagram. The dependence on C(R) then cancels in ratio Z;/Zs, and the g term in
Zs5 is smaller by a factor of four than it is for a fermion. Thus the contribution to the beta
function is also smaller by the same factor, and so we have

Blo) = —[$T(A) - $T(R)| 155 + O") (73.42)

73.2) R-dependent contributions to Z3 are additive, and R-dependent contributions to Z; and Z
cancel in the ratio. Thus we have

3
UT(A) = § ST (R) - § ST (R)] 15 + O0(”) (73.43)

=)
—~
)
~—
I
|
[ —
—_

73.3) Comparing with spinor electrodynamics, we have e? — nyT(R)g? in Z3, and ¢? — C(R)g?

in Zy and Z,,. Therefore we can use our results from problem 66.1 with the replacements

e? — nyT(R)g? in y4 and €2 — C(R)g? in vy and 7,,, so that

_C(R) 2 _nFT(R) 2 _ 3C(R) 2
STem Y AT e 9 m= g 9 (73.44)

847
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74 BRST SYMMETRY

74.1) We have —i [ d3r eikx%A“(x) =>\ ef(k)a;(k). Contracting with €% (k) then yields al(k),
since inspection of eq. (74.37) shows that &%, ,(k)e} (k) = d;. On the other hand, contracting
with ck,, yields —cv2wal (k). According to eq. (74.40), v2wal (k) = £{Qs,b(k)}, and so
X) = —c€bT (k)|).
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75 CHIRAL GAUGE THEORIES AND ANOMALIES

75.1) We must demand that $Tr{T% T°}T° = 0, where T is a either a generator of the nonabelian
group in the representation R; & ... & R,,, or the generator ) of the abelian group. The
nonabelian generators are block diagonal, with blocks given by T% , and ) is diagonal with
d(Ry) entries @1, d(Rg) entries (o, etc. If all three generators are nonabelian, we have
$Te{T, T°}T° = 37, A(R;)d*, and so we must have Y; A(R;) = 0. If one generator (say
T¢) is the abelian generator ), we have %Tr{T“,Tb}Q = Y, T(R;)Q;6%, and so we must
have 3, T(R;)Q; = 0. If two generators (say 7% and T°) are abelian, we have Tr Q2T =
S, Q2T T, k, = 0, since nonabelian generators are always traceless. If all three generators are
abelian, we have 3°; d(R;)Q3, and this must also vanish.
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76  ANOMALIES IN GLOBAL SYMMETRIES

76.1) We have A#(z) = 3, [ dk [£}"(K)ar (k)™ + ek (k)al (k)e=**] in free field theory. Using
(p.ql = (0lax(p)ax (q) then yields (p,q|A, (2)As(y)|0) = e,el,e”P*71Y 4 &) cpe "4V, Since
Fu(x)=0,A,(x) — 0,A,(x), we have

(Pl Fu () Fr (10) = (=02 (pue—poey) (a2 )e ™7~
+ (=) (que,—ave},) (Ppeo—pocp)e 4P . (76.30)
Contracting with e***? yields
eMP7 (1,q| Fyu (2) Fop (y)|0) = —4P7 (pug,qpel e P 4 gl poepe 15 PY) . (76.31)
Setting © = y = z yields

M7 (pq| Fyu (2) Fpo (2)[0) = —86"P7pe,,qpel, e PT)?
— _8€uvm€y€;p#qpe—i(p+q)z

= +8E“””05M5Lppqge_i(p+‘”z (76.32)

Multiplying both sides of eq. (76.32) with —g?/1672 and using eq. (76.14) yields eq. (76.29).
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77 ANOMALIES AND THE PATH INTEGRAL FOR FERMIONS
77.1) We begin by noting, for later use, that

Te(7°T°T°) = 3 Te(T[1°, T°) + L Te(T*{T", T°})
= LiT(R)f™° + A(R)d"™ . (77.37)

We have omitted the subscript R on the generators for notational convenience.
We will now show that each term on the right-hand side of eq. (77.35) is proportional to A(R).

We note that ¢#*?0,,(A,0,A,) = e"P?0,A,0,A,, since the term where 9,, and 0, both act
on A, vanishes when contracted with e/*°. Now we have e#/*?9,,A%0,AS Tr(T°TT¢). Since
eMP? is symmetric on exchange of uv < po, swpoauAf;apAg is symmetric on exchange of
b <> c. Thus only the symmetric d**° term in eq. (77.37) survives, and this is proportional to
AR).

Now consider E“"p"AgA;Ag Tr(T°T*T°T?). We note that E“”p”AgAzAg is antisymmetric on
¢ < d. Thus we can replace T°T? with its antisymmetric part, %[T c, T = %z fedeTe. Then
we have Tr(T°T°(T¢, T9)) = —3T(R) fedefabe + i A(R) fededab. This must then be contracted
with e*” p"A,IiA;Ag, which is completely antisymmetric on bed. We can make fe@efabe and
fededabe completely antisymmetric on bed by adding the two cyclic permutations of bed (and
dividing by 3). For the ff term, we get %( fedefabe y pdbegace 4 fbeefade) “and this vanishes by
the Jacobi identity. There is no comparable identity for the fd term, so this does not vanish,
and is proportional to A(R).

77.2) We note that e#*7?0,(A,0,As) = e"P?0,A,0,As = %E“”P”FSVFBJ, where we have defined
), =0,A, — 0,A,.

Next we note that 79, Tr(A4,A,A,) = 3677 Tr[(0,A))ApAs] = SecrvPo Te(FY,[Ap, As)).

Next we note that Tr([A,, A|[A4,, As]) = AﬁAgA;Ag Tr([T?, T [T¢,T%). Then we have
Te([T%, T[T, T9)) = — febefedd Te(TeT9) = —T(R) fef%. If we contract with e"77, we
have a factor of " p"AﬁAgA;Agl, which is completely antisymmetric on abc. (Actually, on
abed, but abe will be enough for our purposes.) We can make f®¢f¢4¢ completely antisymmet-
ric on abe by adding the two cyclic permutations of abe (and dividing by 3). As in the previous

problem, the result vanishes by the Jacobi identity. Thus, e**” Tr([A,, Av][Ap, As]) = 0.
Putting all this together, and using F),, = FSV —ig[Au, Ay], we have

%Ewpo Tr(FuwFpo) = %EWPU Tr((FBV—ig[AM, Au])(Fga_ig[Apv Aq]))
= 1P Te(F), Fy, — 2igFy, [A,, As))
= M7 Tr(0,A,0,As — %ig@u(Al,ApAU))

— M7, Tr(A,0,A, — 2igA, A, A,) . (77.38)
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78 BACKGROUND FIELD GAUGE

78.1) The relevant vertices are

q b d c
a W b v

For completeness we write down the corresponding vertex factors when all fields are internal,
as given in section 72:

iVt (p,a,r) = gf (g = )ugvp + (1 — D)vGou + (0 — @) pguw] » (78.43)

VZIb/deU — _2'92 [fabedee(gupgua - guagup)
+ facefdbe(guagpu - g;wgpa)

+ fadefbce(guugap - gupgau)] ) (78.44)
V(g r) = gfqp, (78.45)
iVt = 0. (78.46)

In the three-gluon vertex, at most one gluon may be external. We then have

iV (B,a,m) = 9 g —1)agvp + (r = D+ 4/ )vpn + (B — a — 7/€) pgr] (78.47)

where we have put bars over the labels of the external line (p, i1, @) to identify it. Also, we
have left the gauge-fixing parameter £ arbitrary.

In the four-gluon vertex, at most two gluons may be external. If just one is external, the
vertex is unchanged. If two are external, we have

VZILC,flU = —ig? [ f™*F"(9pp950 — o Gip)
+ fﬁcefdbe(gﬁagpa — YavYpo — Jup9io[§)
+ fadefbce(gﬁugop - gﬁpgou + gﬁagﬁp/g)] . (7848)
In the gluon-ghost-ghost vertex, if the gluon is external we have
iVa(q.r) = gf ™ (q+r)u . (78.49)

In the gluon-gluon-ghost-ghost vertex, one or both gluons may be external. If just one is
external, we have
Z\/-abcd —’Lg facefbde (7850)

If both are external, we have
ivg’i)jcd _ _ig2(facefl;de + fl;cefade)gﬂl7 ] (7851)

See L. F. Abbott, Nucl. Phys. B185, 189 (1981) for more details (and a two-loop calculation
of the beta function).
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78.2) The general analysis of section 53 shows that if we integrate out a field ¢ with a lagrangian
of the form ¢O¢, we get (det O)”, where v is negative for a bosonic field and positive for a
fermionic field, with magntiude |v| = 1 for a real field and |v| = 1 for a complex field (or a
pair of real fields). We can then compute (det )" by summing all diagrams with a single
¢ loop. (If the lagrangian for ¢ includes cubic or higher terms, these generate vertices that
enter only at higher-loop order.) Thus to verify eq. (78.42) at the one-loop level, we need only
show that the quadratic terms for the fields we integrate out (namely A, ¢, ¢, and V) have
the form ¢¢ with the appropriate OI.

For the ghost fields, we see from eq.(78.27) that the quadratic term can be written as
e (D?)bece, with D* in the adjoint representation. From eqs. (78.38) and (78.39), we see
that D2 = DA,(l,l)‘

For the quantum gauge field, we use f%°¢ = i(T%)* to write the last term in eq. (78.27)
(omitting the Z3) as —ig A [(T2)% _gﬁ]Acﬁ = %gAba[(TX)bCFgV(Sél:2))a5]Acﬁ. The complete
quadratic term for A is then 2A4°[(D?)%g,5 + g(Tg)bCFﬁV(Séfz))ag]Acﬁ. From egs. (78.38)
and (78.39), we see that the operator in square brackets is Oa,2,2)-

For a massless Dirac fermion, the lagrangian is W(sz)\II, and so integrating it out yields
det(i)) = [det(iP)?]'/2. From eq.(77.27) with k = 0, we have (i)? = D? + gS*F,,,
where S = L[y#, 4¥] and F),, = TYFy,. From eqgs. (78.38) and (78.39), we see that (i) =
Orpre,21)8(1,2)-

For more details, see Peskin € Schroeder or Weinberg II.
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79 GERVAIS-NEVEU GAUGE
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80 THE FEYNMAN RULES FOR N x N MATRIX FIELDS

80.1) For N = 1, every T® = 1, and so in terms of component fields (actually of course just the
one field), the cubic vertex factor is 2ig and the quartic vertex factor is —6i\. Diagrams
contributing to @ — @y scattering are those of fig. 10.2, plus a four-point vertex; thus the

amplitude is

(29)° (29)? (29)*
(k1+k2)?  (kitks)?  (kitkg)?
In terms of the color-ordered rules, every trace equals one, and so summing over the six color

orderings yields 24y + 2A3 + 2A4, where A; is given by egs. (80.13-15). This reproduces
eq. (80.20).

6 . (80.20)

80.2) The square of any trace is given by the left side of fig. 80.4, but with the right half labeled
1234 (from top to bottom). The product obviously contains four closed loops, and hence
equals N*. For the product of two different orderings (with the left half ordered as 1234 by
convention), we can always use the cyclic property of the trace to put the label 1 at the top of
the right half. Then any of the five possible ordering of 234 (that are not equal to 234) differ
either by exchange of a single pair (324, 243, 432) or by a cyclic permutation (342, 423). In
either case it is easy to see that the product contains two closed loops, and hence equals N?2.

80.3) The second term in fig. 80.5 can appear on n = 0,1,2, 3, or all 4 of the bridges connecting the
left half of the left side of fig. 80.4 with its mirror image; call each such appearance a “broken
bridge”. The number of ways to choose the n broken bridges is Cy, = 4!/(4—n)!n!l. The
number of closed loops when there are n broken bridges is B,,, where B,, = 4—n for n # 4,
and By = 2. Each broken bridge contributes a factor of —1/N. Thus, we have

4
S m@TETSTOR = 3 GNP (—1/N)"
a1,a2,a3,a4 n=0

= N* —4N? +6-3N 2. (80.21)

80.4) a) We get a factor of g for every 3-point vertex and a factor of A = cg? for every 4-point
vertex. Each face gives a closed index loop, and hence a factor of N. Thus we get ¢"3+t2VaN T,

b) The total number of propagator endpoints is 2E. In a vacuum diagram, every propagator
endpoint is attached to a vertex. Since each n-point vertex accounts for n endpoints, we have
2 = 3V3 +4Vy.

c) x =V — E+ F. (See http://www.ics.uci.edu/~eppstein/junkyard /euler for 19 different
proofs in the case of G = 0.) Using V = V5 + V; and 2E = 3V3 + 4V}, we also can write
x=F-3V3-Vi.

d) Setting g = M/2N~=1/2, our result in part (a) is that the N dependence of each vacuum
diagram is given by N~V3/2-VaNF — NF-V3/2-Vi — Nx = N2-20
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81  SCATTERING IN QUANTUM CHROMODYNAMICS

81.1) If we choose q1 = q3 = ko and g2 = g4 = ks, then all polarization products vanish except
e1-e4 = (31)[42]/(34)[21]. Also, the analysis beginning after eq.(81.14) and leading to
eq. (81.21) still holds, and we still have ks-e9 = —kj-e9. The remaining factors are now
ki-eo = (31)[12]/v/2(32) and ky-e3 = [24](43) /v/2[23]. Putting all this together and
canceling (most) common factors, we find

A (1374?34
(12) (23) B4 [12] 23]

In the numerator, use [24] (34) = —[21] (3 1), and cancel —[21] with the [12] in the denomi-
nator. Now multiply numerator and denominator by (41), use [24] (41) = —[23](31) in the
numerator, and cancel the [2 3] with the one in the denominator. Using —(31) = (13) in the
numerator then yields

(81.61)

(13)*

A= (12)(23)(34)(41) ’

(81.62)

which agrees with eq. (81.37).

81.2) Using ps = —p1—k4 in the first diagram, we see that the first line of eq. (81.47) is proportional
to [2|Zs3ph£411) + (245K ,474]1). With g4 = k1, we have ¢, oc [4)[1]|+]1](4], and so £,|1) o [1](41).
We also have p, oc [1)[1] + |1](1], and so p,#4]1) = 0. Similarly, with g3 = k4, we have
¢4 o< [3](4]+1]4)[3|, and so [2|¢4 o [23](4]. We also have ¥, o [4)[4]+]4](4], and so [2|¢;¥, = 0.
Thus both terms in the first line of eq. (81.47) vanish with this choice of reference momenta.
In the second diagram, we have Vau5 = —iv/2g[(e3e4)(kses) + (c4e5)(kacs) + (e563)(kseq)]
with ks = —ks—k4. For q3 = k4, €3-¢4 = 0 and kg-e3 = 0, so the first two terms in Vgys
vanish. Also, ks-eq4 = —k3-e4 — ky-e4 = —kz-g4. Thus Vg5 = iv/2g(e5e3)(kseq). Making the
replacement efe? — igh” /s1o then yields

2|¢5|1) k3-€4
512 '

A= — (81.63)
We have [2|¢5]1) = v2[23](41)/(43), ks-eq = [13] (34)/v2[14], and s12 = (12)[21]; there-

fore (23] (41) [13](34)

(43)[14](12)[21]
In the numerator, use [13] (34) = —[12] (24), and cancel the —[1 2] with [21] in the denomina-
tor. Now multiply numerator and denominator by (4 1), use [14] (41) = s14 = s23 = (23) [32]
in the denominator, and cancel the [32] with —[23] in the numerator. Finally, multiply
numerator and denominator by (41) and use (41) = —(14) to get

A= — (81.64)

(14)° (24)
(12)(23)(34)(41) '

A= (81.65)

which agrees with eq. (81.55).
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81.3) We take g3 = k4 and g4 = k3 and follow the analysis that led to eq. (81.50), which now reads
A= 2y (B HEDE 1)/ (—514) - (81.66)
We have ¢, = v/2(|3)[4] + |4)(3])/[43], £4+ = V2(I3)[4] + [4](3])/(34), so

e [24](31)[14](31)
[43] (34> S14

Use s14 = (41) [14] and cancel the [14]. Now multiply numerator and denominator by (13)
and use (13)[43] = —(12) [42] in the denominator, and cancel the —[42] with [24]. Finally
multiply numerator and denominator by (23) to get

(13)° (23)
(12)(23)(34)(41) ~

(81.67)

A=

(81.68)

which is the same as eq. (81.56).
81.4) a) The double-line picture for Tr(T*T*TT%) is \\__/ \_J \ ./

To compute Tr(T*T*T°T*¢), we connect a and b with the propagator of fig. 80.5, and also ¢
and d. This results in four diagrams

oo OO OO OO

with coefficients 1, —1/N, —1/N, and +1/N?; arrows have been omitted. Each closed loop
results in a factor of IV; these diagrams have 3, 2, 2, and 1 closed loops, respectively. Thus,
Te(T°T*TT¢) = N3 — (1/N)N? — (1/N)N? + (1/N?)N = (N?—1)?/N.

To compute Tr(TT*T*T?), we connect a and ¢ with the propagator of fig. 80.5, and also b
and d. This results in four diagrams

oY (o oY LW

with coefficients 1, —1/N, —1/N, and +1/N?; arrows have been omitted. Each closed loop
results in a factor of IV; these diagrams have 1, 2, 2, and 1 closed loops, respectively. Thus,
Te(T°T*T°T¢) = N — (1/N)N? — (1/N)N? + (1/N?)N = —(N?—1)/N.

b) Using the cyclic property of the trace, we have Tr(T¢TETETS) = Tr(TETATLTY). Using
ToT? = C(R)I, we get Tr(TSTETATS) = C2(R)D(R) = T?(R)D?(A)/D(R).

We use TSTE = TETE + i f*°TE to get

Te(TATETOTY) = Te(TETATETY) + i f % Tr(TSTATY)

= T*(R)D*(A)/D(R) + i f*° Te(Tg[Ty, T2))

= T*(R)D*(A)/D(R) — gf“bcf“der(Tch)
T*(R)D*(A)/D(R) — $T(A)6* T(R)5

—T2< )D*(A)/D(R) = 3T(A)T(R)D(A) . (81.69)

Using T(N) =1, T(A) = 2N, D(R) = N, and D(A) = N2—1, we reproduce egs. (81.58) and
(81.59).
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81.5) Squaring egs. (81.55) and (81.56), we have

|A(17,2F 34',4_)\2 = 351)’4313/3%23%4 = 314313/3%2 = ut/s2 ,

ar%q>
|A(17, 2:{,3_,4+)\2 — §34514/59950, = S35/809514 = 0 /5%U . (81.70)

Changing the signs of all helicities is equivalent to complex conjugation, and thus yields the
same values of |A|?. Thus we have

> AP =2(8% fu+tu)/s* . (81.71)
helicities

Swapping 3 < 4 is equivalent to t < u, so

S AP =200/t +tu)/s* (81.72)
helicities
Adding these, we find
z:(mg%HAJﬂzzawu+%u+ﬁﬁyﬁ. (81.73)

helicities

We must also evaluate A*(1;,2},3%,47)A(1;,2F,47,3%). Complex conjugation changes all
angle brackets to square brackets, with an even number of additional minus signs. Then we

have
[14]3 [24] (14)3 (24)
[12][23][34][41] (12)(24)(43)(31)
(—514)° (—524)

S G piehagey - G

Now we use [23] (31) = —[24] (41) in the denominator, followed by —[24] (24) = so4 =t and
—(41)[41] = s14 = u and s34 = $12 = s to get

A*(17,2F .37, 47) A1, 25,47,3%) =

A*(17,25,37,47) A1, 25 ,47,3%) = u?/s* . (81.75)
This is real, so taking the complex conjugate yields

A*(17,25,47,37) A1, 25,37, 47) = u?/s*. (81.76)
Swapping 3 < 4 in egs. (81.75) and (81.76) yields

A(17,25,47,37)A(17,2F,37,4%) = ¢%/5, (81.77)

A*(17,2F,37,4T)A(17,2F,47,37) = t%/s. (81.78)

Adding up eqs. (81.75-81.78) and the same with all helicities flipped (which is equivalent to
complex conjugation), we find

S (434, + AT4) = 42 + u?) /5 (81.79)

helicities

81.6) See page 19 of “Calculating Scattering Amplitudes Efficiently” by Lance Dixon, available
online at http://arXiv.org/hep-ph/9601359.
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82  WIiLsON Looprs, LATTICE THEORY, AND CONFINEMENT

82.1) We have

2
g 1
0|We|0) = —== ¢ d dy, ———= 82.42
(0[Welo) exp[ L dna yu($_y)2], (82.42)
where C' is a circle of radius R. Since the integrand depends only on = — y, we can fix
Y, = R(1,0) and replace §. dy, with 27R(0,1). Then we set z, = R(cos#,sinf) and dz, =
R(—sinf, cosf)df. We then have

fd j{d 1 _ o /+7r cos 6 df
o e (x—y)? . (cos® —1)% + (sin6)?

/+7r cos 6 db
=27 _
—r 2(1 —cosf)

T cos6db
=2 o 2.4
7T/o 1 —cosf (82.43)

We are instructed to set the integrand to zero if (z—y)? < a?; since (v —y)? = 2R?*(1—cos §) ~
R?0? for § < 1, the lower limit of integration should be a/R rather than zero. The integral
is then dominated by the low end, and we can make the replacements cosf — 1 in the
numerator, and 1 — cos — %92 in the denominator. Then we have

1 df
_ o)
= % +0(1) . (82.44)
Thus
(0[We0) = exp[—(g*/4n°a) P, (82.45)

so ¢ = 1/4n2.
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83 CHIRAL SYMMETRY BREAKING

83.1) a) Each Dirac field equals two left-handed Weyl fields. All 2ny of these Weyl fields are in
the 3 representation (because it is real). So there is a U(2ny) flavor symmetry; the U(1) is
anomalous, leaving a nonanomalous flavor symmetry group SU(2ny).

b) Call the Weyl fields xai, o = 1,2,3, i =1,...,2ns. The composite field is xaiXaj, and it
is symmetric on i <> j. The condensate is (0|XaiXaj|0) = —v3d;;. The general SU(2n;) flavor
transformation is xai — LijXaj. The d;; in the condensate transforms to Ly L, = (LL");;.

For this to equal d;;, L must be orthogonal. Thus the unbroken flavor symmetry group is
SO(2ng).

¢) Number of Goldstone bosons = number of generators of SU(4) minus the number of gen-
erators of O(4) = 15—6 = 9.

d) The nonanomalous flavor symmetry is again SU(2ny). The composite field is 27 XaiX3j
and it is antisymmetric on i < j. The condensate is <0|€°‘Bxaixgj|0> = —v3n,;, where
nij = —"nj;- We assume that n? = —I, which yields the largest possible unbroken subgroup,
Sp(2ny); see problem 24.4. Number of Goldstone bosons = number of generators of SU(4)
minus the number of generators of Sp(4) = 15 — 10 = 5.

83.2) So that (0|Hmass|0) is negative, and lowers the energy.

83.3) Let II(z) = 7%(z)T/ fr. Then U = 1+ 2411 — 211> — 213 and 9,U = 29,11 — 2[(9,IN)II +
I1(0,11)] — %i[(9, 1)1 + (0, INII + I1%(9,10)]. 9,U" is the same, with i — —i. Then

O"UT0,U = 40"T19,T1 + 4[(8, I + T1(8,11)] (0, IT)IT + T1(9,,1T)]
— 20,11[(8,I)II* + (9, ID)II + I1%(9,,11)]
— 2[(8,I)I1* + I(8,, ID)IT + I1%(9,,11)] 0,11 . (83.35)

Taking the trace and using the cyclic property, we find

Tr*UT0,U = 4 Tr 010,11 + (8—32)Tr II*OMT10,, 1T + (8—29) Tr II(OI)II(9,,I1)
= 4f 20 m Te TOT? — & £ (7 e, mt — 7 (97 me (0, m )| Te TOTPTT? .
(83.36)

Te T°T® = £69°. For SU(2), Tr T°T*T°T? vanishes unless the indices match in pairs. Then,

using 797% = —T°T® if a # b and (T?)? = 11, we get TrToT°T<T? = (52051 — gocsbd +

§245b¢). Using this in eq. (83.36) yields eq. (83.13).
83.4) We need the interactions from the mass term,

Lonass = mu> Tr(U + UT)
= mv® Tr(2 — 4117 + 411%)
= —dm3f 20 Te 70T + %mv?’f;‘lwaﬂbwcwd Tr ToT°T°T
= —2mv’f 2non + tmv? —Ananonba®

_ 1,2 _a,_a 1..2,-2 _a_a_b_b
= —smym'T" + ogmy fr ot (83.37)
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Combing the interaction terms in eq. (83.13) and eq. (83.37), we have
Ling = ¢ fr 2(rer b, — nomb ot nbo, M + tm2 morerbrl) (83.38)
Treat all momenta as outgoing. Then
T = VOl Lo k. ke, kq)

= L2096 (—2koky — 2kcka + Kake + kaka + kpke + kpka +m2) + (bed — edb, dbe) |
_ fﬂ__2[(5ab(56d(8 . mgr) + 5ac(5db(t _ m72r) + 6ad550(u _ m2)] X (8339)

83.5) Let N, = PN, Ng = Py N, and similarly for V. Then
L = iN,dNy, + iNg@ Ny — my(NxUTN,, + N UNR)
- %(QA—l)i[NLU(@UT)NL + NRUT@U)NR]
= iNIN + Ny (uTPu)N, + iNw (uu )Ny — my NN
— L(ga—1)i[ Nou(@U ) uN;, + Npu! (QU)uING] - (83.40)

AU = (Pu)u + u(Pu) = ul (@U)u’ = ul(Pu) + (Pu)u’ = vl (Pu) — w(Pu') = —2ig. Similarly,
w(@UNu = +2igd. Also, let ul(@u) + u(Pu’) = —2ip. Then eq. (83.40) becomes

= iNIN — myNN + N () + ¢)NL, + Na (9 — ¢)Nx
+ (QA_l)[NL(ZiNL _NR(ZiNR]
= iNON — mNNN + Np(Po+P)N + gaiNd(P,—P)N
= iNIN — myNN + NN — g NN . (83.41)

83.6) From eq. (83.19), we find

Lmass = _U3f7r_2 Tr MH2
—203f72[(my 4+ mg)T 7T + (M + M) KTK™ + (mg + ms)K°K°

+ gma(gen + 1) + gma(gzn — 7°)° + 2man’] (83.42)
Thus
m2e = 20°f % (my + ma) (83.43)
mﬁ{i = 20372 (my + my) (83.44)
ms o=y = 20°f % (ma + my) (83.45)
m72r0,77 = 3U3f7r2 u T Mg + Mg
T (m2 +m2 4+ m? — mymg — mgms —mem,)V? . (83.46)

b) Expanding in m,, q/ms, we find
m2o = 20°f%(my, +my) , (83.47)

m% = %vsf;2(4m5 + m, + md) . (8348)
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We add Am3,, to m2. and 2Am32,; to m3... Then we find

Amzy = mie —mZo = 0.00138 GeV? (83.49)
mv3f? = L+ mis — mio +m2 — 2Am2,) = 0.00288 GeV? (83.50)
mav®f? = L= m¥s +m2o + m2o + 2Am2,,) = 0.00624 GeV? | (83.51)
M2 = L(4+ mis +mio —m2y — 2Am2,) = 0.11777 GeV? . (83.52)

c) my/mg = 0.46 and ms/mg = 19.
d) Using egs. (83.50-83.52) in (83.48), we find m,, = 0.566 GeV, 3% larger than its observed
value, 0.548 GeV.

83.7) a) Focusing on the 7 dependence, we have U = 1 + in?/fy, detU = 1 + 3in?/f,, and so
L=-L(Tr1)f2 + 9F2) fo 2079, 7. Requiring the coefficient of 9799, 7 to be — 3 yields
F? = 5(2/3 = 3f3).
b) Only the mass terms for 7°, 1, and 7° are different. They are now

Linass = _2U3f7r_2[mu(%77 + 70 + 7"7T9)2 + md(%ﬁ — 70 + T’7T9)2

+ms(Fen + rn®)?] (83.53)
where r = fr/fo. Setting m, = mqg = m, we get
Lonass = =203 2[2m/(7°)% + Zm(%n + %) + ms(%n + %)% . (83.54)

So we have m2 = 4mv3/f2 as before. In the limit m < my, the eigenvalues of the n-m*

: 2 _ 8 3,.2Y,3£—2
mass-squared matrix are m; = smg(1 + 37°)v°f° and
2
9r 9

mg =

Thus the maximum possible value of myg is v/3my, attained in the limit fo — 0.
83.8) We have
L= —c,N(MP, + MTP)N — xN(UTMTUTP, + UMUP;)N
— 3 Te (MU + MTUNYN(UTP, + UP:)N
— ey Tr (MU — MTUNYNUTP, — UP:)N
= — o NuMuP, +u' M PON — co N (uf MTul P, 4+ uMuPr)N
— 3 Te(MU + MTUNYNN — ¢y Te(MU — MTUY)Y Nys N
= — Ly N(uMu + uf MTuhN + se- N(uMu — uf MTut)ys N
— 3 Te(MU + MTUNYNN — ¢y Te(MU — MUY Nys N, (83.56)
where c+ = ¢ £ ¢2, and ¢; 2,3 are numerical coefficients. Now set u = 1; then the first term

contributes ¢4 M to the nucleon mass matrix, and hence makes a contribution of ¢4 (m, —mg)
to the proton-neutron mass difference, m, — m, = —1.3MeV. Using m, = 1.7MeV and
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mg = 3.9MeV yields ¢y = 0.6. However, the electomagnetic mass of the proton is comparable
in size to the proton-neutron mass difference, so a better estimate of c; comes from the
masses of baryons with strange quarks, ¢y (mg — %mu — %md) = mzo —myo = 122 MeV; using
mgs = 76 MeV yields ¢y = 1.7. We will need this number in section 94.
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84 SPONTANEOUS BREAKING OF GAUGE SYMMETRIES

84.1) a) We have V = im20? ", a2 + IA0t Y, af + 1o'ho (3, o?)?. Differentiating with respect
to v and imposing 3, a? = 1 yields m?v + [A A(a) + Mo B(a)]v?, where A(a) = Y, o} and
B(a) = 1. Setting this to zero, solving for v, and plugging back into V' yields eq. (84.18).

b) The coefficient of v* in V is A A(a) + A2 B(), so if this is negative the v* term is negative,
and becomes arbitrarily large for large v.

¢) Since A; A() + A2 B(«r) must be positive, and since V' is proportional to its negative inverse,
making A1 A(«) + Ao B(«) as small as possible will make V' as negative as possible.

d) We want to extremize V, and hence A\;A(a) + Ao B(a), and hence 3, a}. To impose the
constraints Y, af = 1 and Y, a; = 0, we extremize Zi(%a? + %aa? + bay;), where a and b are
Lagrange multipliers. This yields a cubic equation for each a;, a? + aa; + b = 0, which has
at most three different solutions. The sum of these roots equals minus the coefficient of the
quadratic term, which is zero.

e) Recall that any set of N numbers x; with mean Z = N~! 3", x; obeys 3;(z; — z)? > 0 or
equivalently >, 27 > Nz? = N=Y(3, 2;)2. Letting z; = o2 we have Y, af > N71(3, a?)? =
N~ This inequality is saturated by (and only by) a; = 2N ~'/2. To have >; o = 0 is then
possible only if IV is even, and only if there are equal numbers of plus and minus signs; that
is, N, = N_=3N.

For N odd, the inequality cannot be saturated, and so things are more complicated; see
L. F. Li, Phys. Rev. D 9, 1723 (1974), Appendix B. The following simplified analysis is due
to Richard Eager.

First assume that only two of the three allowed values of the «a;’s occur; call these two
values 3+ and (5_. We suppose that 3+ occurs Ny times, with N + N_ = N. We then
have >, = Ny + N_._ =0 and > ;0? = NJrﬁ?F + N_f3?> = 1, which implies 82 =
Ny /NiN. Letting Ny = 2(N+A) and N_ = 1 (N—A), we find 3,0} = N gt + N_pt =
(N24+3A%)/(N3—~NA?), which is a monotonically increasing function of A; therefore the
minimum is achieved for the smallest possible value of A, which is zero for even N and one
for odd N. For odd N the minimum value of 3, af is then (N2+3)/(N3—N).

Now suppose that all three possible values of the «;’s appear; call these values 81, f_, and
Bo. We will show that 3", o is larger than (N2+43)/(N3—N), its minimum value when only
B+ and (_ appear. Hence the solution with only 8, and §_ is preferred.

Label the «;’s so that o = By, ag = f_, and a3 = [Fy. Let r = ﬁ_zi_ + 8% + 32. Then we
have "N, 02 = 1—r, and so YN, a? > (N-3)"4(XN, a?)? = (N-3)~'(1—7)2. From part
(d), we have B+ + f— 4+ [y = 0. An identity satisfied by any three numbers that sum to
zero is (3 + B + 33 = %(ﬂi + 32 + [32)?, which in our case becomes 3} + 3% + 3j = %7’2.
Therefore SN | af = $r2+ SN ot > $r2+ (N—3)71(1-r)%. Minimizing the right-hand side
with respect to r, we get 7 = 2/(N—1) and hence ¥, o > 1/(N—1), which is larger than
(N243)/(N3~N) for N > 3.

For N = 3, minima with all three values appearing have the same energy as minima with
only two. This is an accidental degeneracy that is lifted by quantum corrections.



Mark Srednicki Quantum Field Theory: Problem Solutions 139

85 SPONTANEOUSLY BROKEN ABELIAN GAUGE THEORY
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86 SPONTANEOUSLY BROKEN NONABELIAN GAUGE THEORY

86.1) a) Let ¢; = ¢;qmr), 50 that ¢; = %(@ + i¢}). Also, let R* = ReTg¢ and J* = ImTg.
Substituting these into dp; = —i04(T2)7 ;, we get

00i +id¢; = —i0*((R): +i(J%)](¢; + i)

= 0°[(J))i d; + (R 9] + 0 [—(R*) ¢; + (J*)i &) - (86.28)
This can be written as
op iJ* 1R% ¢
= —30° . (86.29)
Yol —iR*  ¢J® ¢
Thus we identify
J* R“
T4 =4 . (86.30)
—R* J®

b) From eq. (86.30), we have

JoJjb — Rapb  jeRb 4 Rajb
ToTY = — (86.31)
~ \—Regb_ jepb _Rapb 4 gajb )’ '
and hence
. [R®, R"] — [J*,J*] —[R®,J"] — [J* RY|
[T¢, 7" = . (86.32)
[Ra, Jb] + [']av Rb] [Rav Rb] - [Ja7 Jb]

From [T¢, T?] = i f*°T¢, we have [R*+i.J%, RV +iJ%) = i f%¢(R°+iJ¢). Collecting the real and
imaginary parts on each side, we find [R®, R®] — [J?, J°] = — f®¢J¢ and [R®, J*] + [J?, R"] =
f¢Re. Using these in eq. (86.32), we find

[T¢, T =ifabe S (86.33)
s =1 s .
—iR¢ iJ°

and hence [T9,T"] = ifebeTe,
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87 THE STANDARD MODEL: GAUGE AND HIGGS SECTOR

87.1) See eq. (88.15) and eq. (88.16).
87.2) a) e = (4r/127.9)1/2 = 0.313, g» = e/sw = 0.652, g1 = e/cw = 0.357, v = 2My/go =
247 GeV.

b) Gr = ma/v2sin?0y M2 = 1.16 x 107° GeV?2. Actual value from muon decay is 1.166 x
1075 GeV2.

c) My = %ggv = ev/2sy, 5o Gp = 1/v/2v%. Thus a measurement of GF is a direct measure-
ment of the Higgs vacuum expectation value.

87.3) a) From problem 86.1 we have

J* R®
T = , (87.28)
—R* J®
where R® = ReT® and J* = ImT*®. This yields
0 0 0 1 0 -1 0 0
p_if 0o 0 10 o_ i1 0 0 0
7_20—100’ 7_2000—1’
-1 0 0 0 0 0 1 0
0 01 0 00 -1 0
5_i[ 0 00 -1 _if0o 0 0 -1
7_2 -1 0 0 0 )’ y_2 1 0 0 0 (87.29)
0 1.0 0 01 0 0

b) We have F'*; = ig,(7T*);;vj, where v; = vd;1 in our case. Letting T* =Y, we have g, — ¢o
fora =1,2,3 and g, — ¢ for a = 4. We find

0 0 0 g
o v|0 —g 0 0
Fli=5 1, 02 o 0 (87.30)
0 0 —g 0
c¢) We have F';F?; = 102 ( )( )T, where ( . ) denotes the matrix in eq. (87.30). We get
2 0 0 0
2 2
a b _ U_ 0 g3 0 0
Fl =210 0 2 g | (87.31)
0 0 —gig2 ot

The eigenvalues are %g§v2, %g§v2, %(g% + g3)v?, and 0, corresponding to the W+, W=, 20,
and photon.
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87.4) Let’s begin with the WW+ vertex. Consider the third term on the first line of eq (87.27),
—(DFWH)ID,W,F. Tt has the structure of a kinetic term for a complex scalar field that
carries an index v. In analogy with fig. 61.1, the vertex factor for

-D q

Wu —> —> WV
AP

would be ie(—p + ¢)?g"”. (The arrow direction corresponds to charge flow.) However, this
vertex arises from the three-gauge-boson vertex in the SU(2) part of the gauge group, which
has the structure of eq. (72.5). Thus the remaining terms in £ that contribute to the W~
vertex must conspire to reproduce this structure. Thus we have a complete WW~ vertex
factor of

Vig, (. a,r) = —ie[(p—q)°g"" + (q—r)'g"" + (r—p)"g?] , (87.32)
where r = —p—q is the outgoing momentum of the photon.

Since D, = 0, —ie(A,+cot 0w Z,,), the WIW Z vertex is given by eq. (87.32) with e — e cot by,
iViyivz(p.a,r) = —i(ecot Ow)[(p—q) 9" + (a—7)"g"" + (r—p)"g™] , (87.33)
From the last two terms on the first line of eq (87.27), we see that the vyW W interaction is

Loww = —€*(g" 9" — g"°g" ") A AW, W
= —%62(29“1'9[)0 _ guﬁgucr _ guogyp)AuAqu_W; ) (87.34)

Similarly, the yZWW and ZZW W interactions are
Lyzww = —( 2 cot Oy ) (29" g7 — gHP g’ — g’“’g”p)AuZ,,VVp_VV;r , (87.35)
Lzzww = —%(62 cot? Ow) (29" g*7 — g"'P g7 — g’“’g"p)ZMZ,,VVP_VV;r , (87.36)
and from the third line of eq. (87.27),
Lwwww = +5(€*/sin® 0y) (29" g7 — g "7 — g g"" YW, WIW, W, . (87.37)

These yield the vertex factors

iV = —ie® (29" g7 — g""g"7 — ¢"7g"") (87.38)
iVEvw = —i(e® cot Ow) (29" g7 — "7 9" — ¢"7g"") (87.39)
iVl fw = —i(e? cot” Ow) (29" ¢ — ¢ 9" — ¢"7g"") (87.40)
iVigww = +i(e®/sin® 0w)(29" "7 — g7 9" — ¢"7g"") . (87.41)

For the WWWW vertex, the p and v lines have incoming charge arrows and the p and o
lines have outgoing charge arrows.
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From the fourth line of eq. (87.27), we read off the vertex factors for interactions between the
physical Higgs boson H and the gauge bosons,

Vi = —2i(M2 Jv)g" (87.42)
iVh,, = —2i(MZ2/v)g"” (87.43)
Vi aww = —2i(M. /vz)g’“’ , (87.44)
Vg, = —20(M/v?)g" (87.45)

From the last line of eq. (87.27), we read off the vertex factors for the self-interactions of H,
iVag = —3i(m%/v), (87.46)
iVag = —3i(m%/v?) . (87.47)
Since we did not include the unphysical Goldston boson explicitly, we are implicitly working
in unitary gauge (equivalently, R, gauge), and so the W and Z propagators are given by

eq. (85.39),
(355 g + kHEY /M2

AP (k) = 87.48
(k) k2 + M2 —ie ( )
where M is My, or M,. The propagator for the physical Higgs boson is
1
A(K? _—— 4
() = fa = (87.49)

87.5) For H — WTW ™, the vertex factor is —2i(M2 /v)g"”, and thus the decay amplitude is

T = —2(M2 /v)(e1-€2), where £} and b are the outgoing W polarizations. (We drop primes
on outgoing quantities for notational convenience.) Summing |7 |? over outgoing polarizations
and using eq. (85.16), we get

AMS (., kbEY ko ko
(71 = 2332 (o + 50 ) (g + 227
w

where k3 = k3 = —M2 and 2k -ko = (k1 + k2)? —

4ME (1 -k2)?
TP) = Y (4-1-1+2
(TP = = ( i
_ my - 4M2, 12M3
v2 m mi
We then have
. TR (A
H=wirw= = 16mmy m

_ miy 1—
16702

M3,

4MZ 12M3
+
m2 m

(87.50)

k3 — k3 = —m?% + 2M2. Thus we have

(87.51)

(87.52)
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Using v = 246 GeV and My, = 80.4 GeV, we get I' = 0.620 GeV for myz = 200 GeV.

The calculation for H — Z°ZY is identical, except that there is a symmetry factor of S = 2.
So we get
m 4MZ  12M} 4M?
Iy, = o1 — —2£ 2111 - Z . 87.53
H=202° = 3om? m2 i m m ( )

Using v = 246 GeV and M, = 91.2 GeV, we get I' = 0.152 GeV for myz = 200 GeV.
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88 THE STANDARD MODEL: LEPTON SECTOR

88.1) We already checked all possible fermion mass terms in eq. (88.4). To get an allowed Yukawa
coupling, we note that the only scalar field is a 2 of SU(2), and that 2®2® 2 and 2® 1® 1
do not contain a 1, so the only possible Yukawa couplings allowed by SU(2) are pfé and
@ile. We have of ~ (2, —i—%), and so the sum of the hypercharges is not zero for the second
possibility; thus it is not allowed. Finally, adding more fields increases the dimension beyond
four, so there are no other terms to consider. Q.E.D.

88.2) This follows immediately from eq. (75.8) for P,¥. Neutrinos are created by b' operators, and
antineutrinos by d operators. Eq. (75.8) shows that a particle created by a bf must have
helicity —%, while a particle created by a df must have helicity +%.

88.3) Written in terms of fields with definite mass, eq. (88.33) contains a factor of >, y, ¢ €;, where
gauge-group indices have been suppressed. This is invariant under a global transformation
0 — e, &, — eti@g, with an independent phase a; for each generation. Eq. (88.32) is
also invariant under this transformation. The Dirac fields £; and A ; each have charge +1
under the transformation associated with that generation, and charge zero under the other
two transformations. So the electron and electron-neutrino have electron number +1, and
muon and tau number zero.

88.4) The amplitude that follows from eq. (88.36) is 7 = 2v2GF (Why*Povb) (W), Pur), and, using
Y. P, = 7, P, its complex conjugate is 7* = 2v/2Gr (V4" Pouf) (W17, Pou). Summing over
the final spins and averaging over the initial spin, we have

(IT1%) = 5(2V2)*GE Te[(— ¢ +mp ) v P (—#) v P Te[(—p5)y" Pu(—ps+me)y" P
= G} Tr[ v (1=75)] Tr[poy" psr* (1—7s)]

= 16GE[p1opl,, + Prupty, — (P195) 9w + 10w supiD) ]
x [ph py + pi'py — (Dhph) g + i ply. pls]
= 16GE (10}, + p1uph, — (p10)) g )05 P + pE'PY — (Phpl) g™ ]

6
— Cavgne PSP b pls)

= 16GH[2(p10b) (P1P5) + 2(p1ps) (01P2) — 2(p5p5) (p117) — 2(p1p) (Do) + 4(p1ph) (P5P5)
+2(00765° — 00’057 )P1 1 Py Pls]

= 32G%[(p1ph) (P1Ps) + (p1ps) (Pi1h)
+ (p105) (P1p5) — (p1p3) (P1P5)]

= 64GF (p1ph) (Piph) - (88.50)

88.5) a) Only the neutral current contributes to v,e” — v,e”, so we have Log = 2v2 GFJQ‘JZM,
with the relevant terms in the current given by

T = T — % Tk
= NV (=N = 38/ (1=75)€ + 5, E7"E
= INA(1=y5)N + $EH[(— 5 + 25%) + 3751€ (88.51)
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Thus we find Loy = == GpNA*(1—75)N E7,(Cy—Cis)E with Cy = —1 +2s2, and C, = —1.
/2 It 2 2

b) Both the charged and neutral currents contribute to v.e™ — ve.e”. The neutral current
analysis is the same as above. The extra contribution to L.g from the charged current is
ALeg = 2V2GpJ I,
= 5GPV (1=95) N N (1=75)€
— LGN (195N Evu(1-75) (58.52)

where the last line follows from the Fierz identity, eq (36.62). We see that AC, = AC, =1,
and so C’V:%+s%\, and C'y = %

7T = %GFﬂiﬁa(1—75)UVU'67a(C'v—C'A75)Ue, T = %GFUV'VBO_’VE))u;/ﬂe’Vﬁ(Ov_CA'%)u,e’

H5G) Tr((—#, )7 (1=95) (=1, )7 (1-75)]
X Tr[(—g+me)vs(Cv—Cays) (—petme)va(Cy—Cays)] . (88.53)

(T1%)

Let’s evaluate the second trace:

Tr[...] = Tr[p,v5(Cv—Cavs)Peva(Cy—Ciavs)] + mg Tr[y(Cv—=Ca5)7a(Cv—Cars)]
= Tr[ﬁe'yﬁleeV«l(Ov—CA%)Z] + mg Tr[v57a (Cyv+Cay5) (Cyv—Cavs)]
= Trf, a0 e (Cot+C2—2Cy Cars)] + m? Tr[ys7a(C3+CF)]
= A(CF+CY) Peplhe + Peablis — (Pel)gas) + 8iCy Cr ppoaPlpy
— HCTHCR)MEgas
= HCTHC)PesPea + Pealles — (Pebletm?)gap] + 8iCy Cagppoaplt - (88.54)
We get the first trace from this one via e — v, m, — 0, Cy, — 1, and Cy — 1, so the first

trace is
Tr[...] = 8[pps* + popl) — () g*’] + 8ie* " pyap),. - (88.55)

Now we have

(ITP) = 8G3[(C24+C) ((pepn) (0)) + (peb)) (W) + M2 (pu1)))
+ 200 Cu((pep) (Pl = (pep)) (00| (88.56)

Using pepy = plpl, = —(s—m?), pupl, = 2t = —L(s+u—2m?), pep), = plp, = 2(u—m?), we

get

(|T?) = 2G% [(C’%%—C’i)(82+u2—4mg(s+u)+6m§)+2C’VC’A(32—U2—2mg(S—u))}. (88.57)

88.6) Consider a massive vector field Z* and a Dirac fermion field ¥ with Ly = ZHU (gv—gas)¥;
then the amplitude for Z — eTe™ is T = U7y, (gv—gays)u1. (We have dropped the primes
on outgoing quantities for notational convenience). The amplitude is the same if ¥ is a
different Dirac field that is unrelated to ¥, so it also holds for a process like W+ — e™v.
So, first we will compute the decay rate without specifying g, and g,, and then we will find
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the values of ¢y and g, for the three processes of interest, Z° — ete™, Z° — T.v,, and
WT — etw. We will neglect the electron mass.

We have 7% = ¥ U1, (gv—ga7ys)v2, and so, summing over final spins and averaging over the

three initial polarizations, we have

(IT1?) = 3(Cpac”e™) Trlh v (9v—9a75)Po v (9v —9a5)]

(9" + K"K /M) T v (9 — 9475 oV (9v —9a75)] (88.58)

where k = py; + po is the momentum of the vector particle, and M is its mass. We evaluated
this trace in problem 88.5; we then have

Wl wl—=

(T3 = 5(g2 + g2)(g" +k"K" /M) [p1upo + Propop — (P172) ]
= 3(0% + gD+ 1 =4+ 1)(p1p2) + 2(kp1) (kp2) /M?] . (88.59)
We have k? = (p1 +p2)? = —M? and pf = p3 = 0, so pips = —3M?. Also kp; = (p1 +p2)pi =
p1p2 = —%M 2. Thus the factor in square brackets evaluates to M?, and so

(IT1?) = 3(g2 + g2)M* . (88.60)

For distinguishable outgoing massless particles, we get the total decay rate by dividing by
167 M ; thus

I'=3(52+90)M . (88.61)
Now we consider our three processes. From eqs. (88.23) and (88.25), we see that for W+ —
eTT,, we have gy = ga = g2/2V/2; using go = ¢/sy and e? = 47a, we get

a

= M . (88.62)
1252, "

FW7L —etv, —

For Z° — T.v,, we have gy = g, = e/4sycw, and so

o)
PZO_’DeVe = WMZ . (8863)
W~W
For Z9 — ete™, we have gy = (—% + 82)e/swew and gy = —%e/swcw, SO
a
Tzoete- = 5 (1- 452, + 858, )M . (88.64)
W-W

Putting in numbers (o = 1/127.9, s2, = 0.231, My = 80.4GeV, M, = 91.2GeV), we
find T'yy+ o5, = 0.227GeV, T'yo 5, = 0.167GeV, and I'yo_ .+~ = 0.084 GeV. (These
predictions are in excellent agreement with experiment.)

88.7) a) With all parameters given as MS parameters at some particular scale, any derived quantity
is also an MS parameters at that scale. Here My, should really be the MS parameter My (1)
with p = My, but the difference between this and the physical W mass is small and can be
neglected.

b) We have Gro = ZoGr/(I1-, Zil/Z), where Z; is the renormalizing factor for the ki-
netic term of each of the four fermion fields. In the present case, since we are consider-
ing only electromagnetic effects, and since two fields have charge zero and two have charge
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one, H?:l Zl-l/ 2 = Zo, where Zs is the renormalizing factor for a Dirac field of charge one.
Taking the logarithm, we get InGpy = InGp + G(a,¢), where In(Zg/Z2) = G(a,e) =
S Gu(a)/e™. Taking d/dInpu, we get 0 = Gp'dGr/dInpu + (0G/9a)da/dIn p. Using
Oa/dInpy = —ea + ((a), rearranging, and dropping negative powers of ¢ (because their
coefficients must work out to be zero), we get dGp/dIn pu = aGi(a)Gr.

c) Let t = Inpu. Then we have dGr/Gr = 7g(a)dt and do/B(a) = dt, so dGp/Gr =
(va/B)da = (c1/b1)der/a. Integrating, we get In[Gr(p1)/Gr(p2)] = (c1/br) Infa(u)/a(p2)],
which yields eq. (88.47) after setting 1 = p and pg = My.

d) For B(a) = bia?, integrating da/B(a) = dt yields a(My) = [1 + bya(u) In(My /1)]a(p);
plugging this into eq. (88.47) and expanding in a(u) In(My /p) yields eq. (88.48).

e) This is just eq. (36.62).

f) The one-loop diagram is exactly the same as the vertex correction in spinor electrodynamics;
in that case a photon attaches to the vertex, in the present case the neutrino current attaches
to the vertex, but in both cases what gets attached does not affect the diagram. In problem
62.2 we showed that Z; = 1 + O(a?) in Lorenz gauge, where Z; is the vertex renormalizing
factor; hence in the present case we have Zg = 1 + O(a?) in Lorenz gauge.

g) We also have Zo = 1+ O(a?) in Lorenz gauge. Hence Zg/Zo = 1+ O(a?) in Lorenz gauge
(and actually in any gauge), so ¢; = 0. (This will change when we consider quarks, and the
process of neutron decay.)
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89 THE STANDARD MODEL: QUARK SECTOR

89.1) To get an allowed mass term, we must have an SU(3) singlet, which requires combining a 3
and a 3. However, the only 3 is also a 2 of SU(2), and both 3’s are singlets of SU(2), so any
color-singlet combination cannot be an SU(2) singlet.

Since the Higgs field is an SU(3) singlet, to get an allowed Yukawa coupling we must again
combine Weyl fields in the 3 and 3. Since there is only one 3, and two 3’s, there are just
two possibilities. Then we have the option of using either the Higgs field or its hermitian
conjugate. The hypercharges must sum to zero. This is true only for the two possibilities
listed in egs. (89.6-7).

Adding more fields raises the dimension to greater than four, so there are no other possible
terms to consider. Q.E.D.

89.2) In problem 88.6, we showed that a vector field of mass M that couples to Dirac fields via
Ling =7 “@’yu(gv — ga7ys5)¥, where ¥ need not be related by hermitian conjugation to ¥, has

a decay rate given by
I'=3-(95 +93)M . (89.38)

So we need only figure out gy and g, for the cases of interest.
For W+ — ud, we see from eqs. (89.21) and (89.34) that gy = gx = c192/2V/2; using g2 = ¢/sw
and e? = 4ra, and multiplying by 3 to account for the three possible colors, we get

act

r —
+ sud 2
Wl g2

My . (89.39)

For Z° — %u, we have from eq.(89.21) and (89.24-26) that gy = (3 — 252 )e/swcw and
ga = ie/swcw, and so

(07

Tgo0 gy = —5—5 (1= 55, + 32s5) M, . (89.40)
8s%,Ch,
For Z9 — dd, we have gy = (—% + %S%N)E/SWCW and g, = —%e/swcw, and so
r 21— 482+ Bsh )M, . (89.41)

Z0dd — 88\2}\16\27\7

Putting in numbers (o = 1/127.9, 52, = 0.231, ¢; = 0.974, My, = 80.4GeV, M, = 91.2GeV),
we find 'y, = = 0.645GeV, T'zo_g, = 0.254GeV, and ' ,,_ 7, = 0.327GeV. To get the
total width, we sum over generations. For W™ decay, if the top quark mass could be neglected,
the CKM matrix would cancel out in the sum. For 65 = 03 = 0, only the first two generations
mix, and in this case the CKM matrix cancels out in the sum over ud, u3, cd, and ¢5. So for
W decay, we have three lepton generations and two quark generations, and we get

3o

— My . 42
452, (89.42)

Fw+ —

For Z° decay, we have three generations of each of Zv, eTe™, and dd, and two generations of

wu, for a total of
@

2452 2

W=W

Ty = (21 — 4083, + 8050 M,, . (89.43)
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Putting in the numbers, we get 'y + = 2.04 GeV and I'yo = 2.44 GeV. These are a few per
cent too low because we neglected QCD loop corrections.

89.3) The representation of the left-handed Weyl fields is three copies of (1,2, —%) @& ((L,1,+1) e
(3,2,+2) @ (3,1,—2) @ (3,1,+3). The 3-3-3 anomaly cancels if there are equal numbers
of 3’s and 3’s; in doing this counting, each SU(2) component counts separately. We see
that each generation has two 3’s from (3,2,4—%) and two 3’s from (3,1,—%) @ (3,1,—1—%);
thus the 3-3-3 anomaly cancels. There is no 2-2-2 anomaly because the 2 is a pseudoreal
representation. See problem 75.1 for a discussion of mixed anomalies such as 3-3-1 and 2—2-1.
In general, we require Y, T'(R;)Q; to vanish, where T'(R;) is the index of the representation
of the nonabelian group, and @); is the U(1) charge. For 3-3—1, each SU(2) component counts
separately. Setting 7(3) = T'(3) = 1, we have 2(+¢)+(+3)+(—3) = 0. For 2-2-1, each SU(3)
component counts separately. Setting 7'(2) = 1, we have (—3) + 3(+%) = 0. For 1-1-1, we
require 3, Q3 to vanish, where the sum counts each SU(2) and SU(3) component separately.
We have 1-2+(—3)24+1-1-(+1)3+3-2- (+2)>+3-1-(=2)34+3-1-(+3)3 = 0. Other possible
combinations, such as 1-2-3 or 2-2-3, always involve the trace of a single SU(2) or SU(3)
generator, and this vanishes. There is also a potential gravitational anomaly that is cancelled
if 37, Q; vanishes; we have 1-2- (=) +1-1-(+1)+3-2-(+3)+3-1-(—2)+3-1-(+3) = 0.
Finally, the global SU(2) anomaly is absent if there is an even number of 2’s; we have 1+3 = 4
2’s.

89.4) See section 97.

89.5) a) These follow immediately from egs. (36.61-62).

b) Using eq. (89.35), we see that gluon exchange would connect U and D across the v* vertex;
except for the group-theory factor, this is the same diagram that we had in problem 88.7, and
that is the same as the vertex correction in spinor electrodynamics. This one-loop contribution
to Z¢ vanishes in Lorenz gauge.

¢) A photon could connect ¢ and D. In this case, the one-loop contribution to Z¢ vanishes
in Lorenz gauge, just like the gluon contribution. A photon could connect £ and D. In this
case, we write the interaction in the form of eq. (89.36), and make the same argument to show
that the contribution to Z¢& vanishes in Lorenz gauge.

d) Finally, a photon could connect £ and . In this case, we write the interaction in the
form of eq.(89.37), but now the vertex has a different structure. In particular, as noted
in the problem, EPyUC = eful. This has the same structure as E€ = efél + h.c.. Thus,
the one-loop diagram is the same as the one that gives the renormalizing factor for £€ in
spinor electrodynamics, namely Z,,. We must adjust the charges, though; for efé’ the charges
are +1 and —1, while for efu! they are +1 and —%. (The problem lists the charges of the
conjugate fields, whose product is of course the same.) Thus we find that Z¢ is given by Z,,
in spinor electrodynamics with (+1)(—1)e? — (4+1)(—%)e?. In Lorenz gauge, using the result

of problem 62.2, we have Z¢ =1 — (%)(%62)6_1 =1- 21

e) The renormalizing factor for the kinetic term of each field (Z; in spinor electrodynamics)
vanishes in Lorenz gauge. Following the analysis of problem 88.7, we define C(a,e) =1In Z¢o =
3202 1 Co(a)/e™. Then yo(a) = aCi(a) = —2, 50 ¢; = — 1.

™
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90 ELECTROWEAK INTERACTIONS OF HADRONS

90.1) Egs. (90.9-10) are in the standard form for a covariant derivative discussed in section 69. For
ru =0, eq. (90.7) also takes this standard form. For [, = 0, eq. (90.8) also takes this standard
form. Since eq. (90.8) is the hermitian conjugate of eq. (90.7), this covers all cases.

90.2) Except for the gauge fields, this is the same as problem 83.5, and the gauge-field terms follow
from straightforward matrix multiplications.

90.3) The amplitude is 7 = Grey frkET, v, (1=75)ur, with kr = pr — p,. Using . u; = —m,u,
and Uy, = 0, we get T = —Grcy fam,, (1—75)u,. Then (|7 ]%) = %(GpclfﬂmT)z(—8pT-p,,),
where the % is from averaging over the initial 7 spin. Next we use —m2 = k2 = (p, —p, )% =
—m2 — 2p,-p, to get —2p.-p, = m2 —m2, so that (|T|?) = 2(Gpey frm,)?(m2 —m2). Then
[ = |p,|{|7]?)/87m2, where |p,| = (m2 — m2)/2m,, so we have

2 .22, 3 2
Greifams m

2
R e T (1 - W) - (90.60)

Putting in numbers (m, = 1.777 GeV), we get [' = 2.43 x 1078 GeV, corresponding to a
lifetime of Aic/cl’ = (1.973 x 1071 MeV cm) /[(2.998 x 10'° cm /s)(2.43 x 1078 GeV)] = 2.71 x
10~'2s for this mode. The measured lifetime of the 7~ for all decay modes is 2.91 x 10713 s,
with a branching ratio to 7~ v, of 11.1%. Thus the lifetime for this particular mode is larger
by a factor of 1/0.111, or 2.62 x 10~'2s. This is about 3% below our predicted value.

90.4) a) We have
T2 = 5GEd U7 (1-9a75)unTny” (1=ga75)uplie e (1-75) 05Ty (1=75 Jue . (90.61)
We sum over final spins and use u, %, = (1—75#)(—p,+my) for the initial neutron to get

25, Up " (1=9a75) unTny” (1=ga75)up
= %Tr(_ﬁp"‘mp)’w(1—9A’YS)(1—’Y575)(—¢n+mn)7y(1—9A’Ys)
= 3 Tr V"Y1 (1492 —2975)
+ %mpmnTr 7“7”(1—93\)
+ 3mp Tr s 2,77 (1—g3)
+ 3mnTr 47 P, [(14+93) 1529
= 2(14+¢2) (phpl, + phplt — ppon g™) 1

+ 4igA€a“ﬁ”ppapng IT
— 2mpmn(1—g§)g“” IT1
— 2imp(1—gi)€aﬁ””zapn5 v
— 2imp, (14+¢2)e™PP 20 pps \Y%

— 4gamu (2" ply + 2"ply — 2-pp g") VI
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Ese,Sgﬂe%t(1_’75)1)17517’71/(1_75)1%
= Tr(—=p+me)vu(1=75) (=#5) 7 (1-75)
= 2Tr P yuy 1o (1-75)
= 8(Peppov + PevPoy — Pe Do Guv) A
+ 81'57#5,,pr§ . B

We take the products of I to VI with A to B, and use p,, p ey =~ —mp pEe . The products
that do not vanish by symmetry are

IA = +32(14¢3)[(PpPe) (Pn o) + (Pp-P5) (P De)]
~ +64(1+g2)m,m,E.Ey
IIB = —320. (e 2. 5, )PpaPuspl Pl
= 16495 (6%,0%5 — 6%50° ) ppaprspl P
= 46494 [(Pp-Pe) (Pn-Pz) — (Pp-Po) (Pr-De)]
~0,
ITTA = +32m,mn,(1—g2) (pe-py)
= +32m,mpE.Ep(1—g3) (BB, — 1) ,
IVB = +16m,(1—g3) (67" 1160 ) 2aPrspID)
= —32m,(1=g2)[(2'Pe) (Pr-P5) — (2P5) (Pr-Pe)]
~ +32m,myE.Ey(1-g3)(2-8, — 2-8;) ,
VB = +16m,, (1492) (e e 15, ) 2aDpspl P
= +32my, (14+93)[(2-pe) (Pp-P5) — (2-5) (Pp-Pe)]
~ —32m,m,E.Ey(1+93) (2B, — 2-65)
VIA = —64g,mn[(2-pe) (Pp-pr) + (2P5) (Pp-Pe)]
~ +64m,mpEeEyp ga(2-B. + 2-8y) ,
TOTAL ~ +32mnmpEeEa[2(1+g§) — (1-g3)
+(1-9%)Be-By
+ (+(1—g3) — (1+93) + 29) 2-B,
+(~(1=g3) + (1+63) +292)2:85 |,

where 3; = p;/E;; (|T|?) = $G3c} x TOTAL, which agrees with egs. (90.43-44).

b) We have
1 —
M=o / dp,, dp, dp; (2m)*6* (pn—pp—pe—po) (| T|?) - (90.62)
The correlation terms integrate to zero. We then have
F—G%C%l 2 B B Bo- 50— —1—1
= =(143g%) [ d°pp d°pe d°py 0" (Pn—pp—Pe—pr)
(2m)
Gt

e / Ppe Py 5(mp—my—Ee—Ey) , (90.63)
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where we set E, = m,, since E, —m, ~ pl% /2m, < E. + E;. Now using d3p. = 4np.E, dE,
and dp; = 4rE2dE;, and setting A = m,, — my = 1.293MeV and r = m./A = 0.3952, we

get
G2c2
I = o -3 (1+3 )/peEe dEe Eg dEI? 5(mn_mp—Ee—E,7)
G2c2 A
= 3 (143 )/ (E2-m?)V?E.(A-E.)? dE,
G2
= w0 (1436 A% (1)
where

F(r) = (=24 (1) /2 4 Bpt iy (r 2 1) V2]

and £(0.3952) = 0.4724. Thus we find I' = (1.184 x 1072° MeV)(1+3g2). Comparing with
I' = hc/er = (1.973 x 10~ MeV cm) /[(2.998 x 10'%m/s)(885.75)] = 7.430 x 10~2° MeV, we
find g, = 1.326, about 4% higher than the actual value of g, = 1.27.

90.5) From eq. (88.48), we see that Gp = Gy(My) should be replaced by [1 — ciaIn(My/1)|Gr,
where ¢; (which is not the cosine of the Cabibbo angle!) was computed to be ¢; = —% for the
interaction that leads to neutron decay. The scale i should be taken to be a typical energy
in the relevant process, in this case u ~ m,. Since the neutron decay rate depends on G%,
the enhancement factor is [...]? = 1 + %aln(Mw/mp) ~ 1.021. Thus the computed value of
1+3g2 is now smaller by 1/1.021, and we get g, = 1.310, which is an improvement, but still
too large by 3%.

90.6) We have

T = 2V2Gr (Lser (ks +ho)" ) (37, (1=75)vp ) (90.64)
and so
(IT1%) = AGE Tr (fy +Ho) (1=75) (—#p) (K +Ho) (1=75) (=, +me)
= 261G Te(f, o) (—1,) (K4 o) (1—75) (—,)
= 8¢;G[2(ks+ko) po(kitko) pe — (ky+ko)?po-pel - (90.65)
We have k; - p; = —m4E; and ky - p. = —m E,, and, since the 7% is nonrelativistic,

(kitko)? ~ —4m? | ko py ~ —moEy, and ko-pe ~ —moE,. Thus
(IT2) = 81 G [8m3 By E. + 4m? (py-pe — EyEe)| . (90.66)
The py-pe term will integrate to zero, so we have
(IT?) — 32c¢1GEm2 E,E, (90.67)

From here it is exactly the same as neutron decay, and so we get

_ GFcl 5
P = <ELas(r)

(2.815 x 10722 MeV)c? | (90.68)
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where A = m—mg = 4.594MeV, r = m./A = 0.1112, and f(r) was defined in the solution to
problem 90.4. Comparing to I' = [(1.973 x 10~'* MeV cm)/(2.998 x 10'° cm /5)](0.397257 1) =
2.614 x 10722 MeV yields ¢; = 0.9634, about 1% too low.

90.7) We have |T|> = (a/ﬂfw)25“”P”€aﬁ75kluk2pklakgwslyagaa’{ﬁs%. Summing over the photon
polarizations yields

<|T|2> = (Oé/ﬂ-fﬂ')2€Hllpo€au~/crk1pk72pk?k;
= (/7 fr)2(20" 107 o — 26" 00° ) K1 ko kg
= (a/mfr)*[2(k1-k2)* — 0] . (90.69)
Using —m2 = (k1 + ko)? = 2k -ka, we get

a?m

(TP = 27T (90.70)

To get a rate for outgoing identical (symmetry factor S = 2) massless particles, we divide by
32mm,, which yields
a’m3

64 JED

in agreement with eq. (90.59). Putting in numbers, we get I' = 7.7eV. The measured lifetime
(with a 7% uncertainty) is 8.4 x 1077 s, corresponding to I' = 7.8eV. (The branching ratio
for this mode is 98.8% with the remaining 1.2% almost entirely eTe™+.)

(90.71)
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91 NEUTRINO MASSES

91.1) The symmetry that gives rise to lepton number conservation is ¢ — e~**(, € — e*@€. In
order for £,yuk to be invariant, we must take 7 — e™“D as well. But then Lymags is not
invariant. This leads to processes such as u~ — e~ 7, but the rate is unobservably low; see
Cheng € Li for a detailed calculation.
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92 SOLITONS AND MONOPOLES

92.1) a) Let y = x/a; then [dPrV(p;(x/a)) = P [dPyV(pi(y)) = aPU. Also, V,pi(x/a) =
o 'Vypi(y), and so [ dPz (Vapi(x/a))? = P~ 2de (Vypi(y)? = aP 2T
b) The energy as a function of « is E(a) = o?~2T 4+ aPU. The energy is supposed to be
minimized by the original solution, with o = 1, and hence E’(1) = 0.
c) E'(a) = (D-2)aP=3T 4+ DaP~1U, so E'(1) = (D—2)T + DU. Since T and U are both
positive-definite, F’(1) cannot vanish for D > 2.

92.2) a) UTU = 1, so 6UTU + UT6U = 0. Multiplying by UT, we get 6UT = —U26U.
b) We have

S(UOUT) = Ud,UT + UdgoUT
= U UT + Udy(—U?sU)
= SUQUT + U[-2U N (95U N)sU — UT20,0U)]
= U UT + [~2(0,UT)6U — UT9,6U)]
= —(04UNOU — UT9,0U
= —0,(UU) . (92.64)

c) on = 5= 02” dg p(UTU) = 5 UT5U|¢ 2T — (), since U is continuous and ¢ = 0 is identified
with ¢ = 27.

92.3) Deform U, (¢) so that it equals one for 0 < ¢ < m, and deform U (¢) so that it equals one for
7 < ¢ < 27. The winding number for U, is then given by ﬁ Jo dé Un(‘)d)U):, and the winding
number for Uy, by ﬁ fﬂ% do UkaquT, since the regions where U = 1 have 8¢UT = 0, and hence
do not contribute to the integral. For the deformed U’s, U,U, = Uy for 0 < ¢ < m, and
U, Uy = U, for 1 < ¢ < 27. Hence, in doing the winding-number integral for U, Uy, we get
the winding number of U from 0 < ¢ < 7, plus the winding number of U,, from 7= < ¢ < 27.
Q.E.D.

92.4) For p < 1, a and f are small, and we can neglect them compared to 1. Eq.(92.30) then
becomes f” + f'/p — n%f/p?. Plugging in the ansatz f ~ p”, we find (v? — n?)p*~2, and
hence v = n (since v = —n does not satisfy the boundary condition that f vanish at p = 0).
Eq. (92.31) then becomes a” — a//p + f?> = 0. Plugging in the ansatz a ~ p®, we find
(a? — 2a)p®~2 4 p®. The first term dominates for o < 2n+2; in this case, we require the
coefficient to vanish, and hence o = 2 (since a = 0 does not satisfy the boundary condition
that a vanish at p = 0). For a = 2, the second term is subdominant for any nonzero n.

Forp>1l,leta=1—Aand f =1—F, with A and F' both < 1. Then, for p > 1, eq. (92.32)
becomes —A” + A = 0; the solution that vanishes as p — oo is A ~ e ?. Eq.(92.30) becomes
—F" + 3°F = 0; the solution that vanishes as p — oo is F' ~ e~??. However, if § > 2 then
actually it is the third term in eq. (92.30) that dominates at large p, since (1—a)? = A% ~ e¢=2°
while the remaining terms go like e??. Hence, for 3 > 2, we must have F ~ e~%” to achieve
appropriate cancellations at large p.
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92.5) We have

® = (sinf cosng, sinfhsinng, cosh) ,
g = (cos @ cosng, cosfsinngp, —sinb) ,
O0pp = (—nsinfsinng, nsinfcosng, 0) , (92.65)
and hence
sinfcosng  sinfsinng cosf
%3, gbb(% @¢ =] cosfcosng cosfsinng —sinf

—nsinfsinng nsinfcosng 0

= nsinf . (92.66)

Also, €% eabcgb“@i@b@jgbc = 25“bc¢“89¢b8¢¢c = 2nsin . Thus the right-hand side of eq. (92.35)
becomes 1= [27 d¢ [ df sinf = n.

92.6) a) Since ¢-¢ = 1, we have both §(¢-®) = 2¢-6¢ = 0 and 9;($-@) = 2¢-9;p = 0.

b) Since 0, 014, and 92 are orthogonal to ¢, they lie in a plane, and so (019 X D2p) -0 = 0;
equivalently, €530, $P02¢° = 0. We can replace 1 and 2 with i and j, since this expression
is trivially zero for i = j. Q.E.D.

c) We have
3(¢"0:0°0;¢°) = (6¢")0i"0;9° + $1(0:09")0;° + 10, (9;64°) - (92.67)

We use this in eq. (92.35) to get dn. When contracted with £2%¢, the first term on the right-
hand side of eq. (92.67) vanishes by our result in part (b). In the second term, we integrate
0; by parts to get

PH(0:83°)059° — —(0,9")0¢°0;¢° — 60" 0,0;¢° . (92.68)

When contracted with €2¢, the first term on the right-hand side of eq. (92.68) vanishes by our
result in part (b). When contracted with %/, the second term on the right-hand side vanishes
because £ 0;0; = 0. A similar analysis applies to the third term in eq. (92.67). We conclude
that on = 0. Q.E.D.
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93 INSTANTONS AND THETA VACUA

a b a* c* 1 d —b
e T e -1 e
93.1) Let U (c d>' Then U (b* d*) and U P <—c a ) We also have
d

det U = ad — be, so imposing det U = 1 we can write U™ = (—c _ab). Then Ut = U~!

yields d = a* and ¢ = —b*. Let a = a4 + ia3 and b = ag + ia; with a, real, so that we now

have U — ( aq +iag  i(a; —iag)

. ) . = -0, with det U = =1
i(a1 +ias) s — iag ) a4 +ia-0, wi etU = a,ay

93.2) (W'|H|0) =3, e ™ (n'|H|n) = 3, e~ f(n' —n). Replace the dummy summation variable
n with m 4 n'; then (n/|H|0) = 3, e {4200 f(—m) = e~ 05 =m0 f(—m) = (n'|0) By,
where Ey = 3, e f(—m) is the energy eigenvalue.

93.3) a) UTU = 1 implies §(UTU) = 0, and so 6UTU + UT6U = 0. Mulitply on the right by Ut and
solve for 6UT = —~UTSUUT.

S(UBUY) = sUBUT + U8oUT
= SUOUT — Ud,(UTsUUT)
= sUORUT — U UTSUUT — UU 0, 0UUT — UU U9, UT
= —Ug,UUUY —UU 0, 0UUT
= —U (O UTSU + UTo,oU)UT
= —Ud(UTsU)UT . (93.46)

b) The variations of Ud;UT, Uo;U t and UO,U' contribute equally to 6n after cyclic permu-
tations of the trace. We have

R T [(Ua,UNUB;UNS(URUT)]
= T (URUNY U U Ud(UTSU)UT]
= " Ty [, UUOUTU 9 (UTSU)] . (93.47)
We used the cyclic property of the trace and UTU = 1 to get the last line. After integrating

O by parts, terms with two derivatives acting on a single U vanish when contracted with
€7k The remaining terms are

—IR T (0, UTU O, UTU 9 (UTSU))
= + MN[0, UTO,UB;UTSU] + Te[Q;UTUS; UTo,UUTSUY) | (93.48)
where we used UUT = 1 in the first term. In the second term, we now use U o;U t = —0; vut
and 0,UUT = —U9,UT, followed by UTU = 1, to get
—R T [0,UTUO,UT U0 (UT6U))]
= + 9K (Te[0,UT o U0;UTSU] + Te[0;UT0;UdUTSUY) (93.49)

The two terms are now symmetric on j < k, and so cancel when contracted with ¥,

93.4) The argument is identical to the one given for problem 92.3, with three-dimensional space
(plus a point at infinity to get S®) replacing the circle S!.
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93.5) This is just plug in and grind, best done with a symbolic manipulation program like Math-
emetica. You should find that (U, UT)(Ud,UT)(UUT) = —(Ud, U (U UM (UdUT) =
—n(sin? y sinv)I, which just provides the measure for the 3-sphere. Of course the final result
isn=n.

93.6) For a unit vector 7, (1-6)% = I, and so exp[ix7-6] = (cos x) + i(sin x)7-&. The right-hand side
of eq. (93.29) takes this form, with 7 = (sin cos ¢, sin ¢ sin ¢, cos ¥); hence U = explixn -],
and U™ = explinxn-&|, which is the same as U with y — ny. Defining U,, = U", we then find
(UnO UM (Un 0y UN(Un0gU}) = —(Un Oy Ul (Un0, U (UnU;) = —n(sin? nysiny)I. Since
Jodx sin? ny = Jo dx sin? x, the final result is the same as for problem 93.5, namely n = n,
which of course is in accord with the theorem of problem 93.4.
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94 (QUARKS AND THETA VACUA
94.1) To simplify the notation let us define m = (c_+4c4)m. Then the mass terms are

—N(my + i0mys)N = —myN (1 + i0mys /my )N
~ —mnN exp(ifmys/my)N (94.40)

where the last approximate equality holds up to terms of order #%m?/ m?\,. If we now make
the field redefinition N' — e~" 5N (which implies N' — Ne™1%) with o = $0m/my,
eq. (94.40) becomes simply —myNN. Next we note that Ny*N — Ne 1@ yhe= 10BN =
Nopetiorse=iavs \f = Ny*N| so any term with v or 4*v5 sandwiched between A and N is
left unchanged by this transformation. All the N'-dependent terms in £ that are not of this
form already have a factor of a quark mass, so the transformation N' — e~ 5N ~ (1—iays)N
with a = O(m) will yield only terms with at least two powers of a quark mass.

94.2) a) The new Yukawa coupling is obviously invariant, and all other terms involve both the fields
and their hermitian conjugates, and so are also invariant.

b) If we define a Dirac field ¥ = <§<T >, then the PQ transformation is ¥ — e~*® W, which,
as we have seen, changes 0 to 6 + 2a.

c) y®Px¢ + h.c. — %yf(xf +xTeh) = mUW, with m = %yf; this has the wrong sign, but
this is fixed by making the transformation of part (b) with a = 3.

d) Without the effects of the anomaly, the a field would be a massless Goldstone boson, and
so is part of the low-energy theory. It gets a standard kinetic term from the kinetic term for
®. Since a PQ transformation changes 6 by +2a and the phase of ® (which is a/f) by —2a,
0 4 a/f is invariant, and is the variable that should appear in the low-energy theory.

e) The potential is given by eq. (94.13) with 6 — 6 + a/f; since a is a field its value must be
chosen to minimize the energy. The minimum occurs when the argument of each cosine is
zero, and this is achieved for ¢ = 0, corresponding to U = I, and a = — f6.

f) If we substitute eq. (94.14) for ¢ back into eq. (94.13) and expand in powers of 6, we get
V = —203(my+mg) + mv30% + ... . We now replace § with 6 + a/f; then the minimum is
at a = —f0, so we write a = —ff + a. Dropping the constant term, the potential becomes
V = 2(2mv3/f?)a?, and we see that m2 = (2mv3/ f?). Using m2 = 2(mq+mq)v®/f2, we get
ma = [/ (mutma)l(fz/ f)?m3.

Alternatively, we can start with eq. (94.13), set a = —f6 + a and ¢ = 7/ f,, find the mass-
squared matrix for 7° and @, and diagonalize it in the limit f > f,. The two resulting
eigenvalues are m?2 and the value of m?2 that we just computed. This method gives the right
answer even if f is not much larger than f.

g) Since a appears in the low-energy lagrangian via the replacement 6 — 6 + a/f, or equiva-
lently § — a/f, it is obvious that a is always accompanied (except in its kinetic term, which
has a different origin) by a factor of 1/f. Thus any interaction carries this suppression.
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95 SUPERSYMMETRY
95.1) Consider - 4[{Q14, QI 4} + {Q24, Q4 }]. Using eq. (92.6), we have

S Al Q14 QTia} +{Qoa, QT2a}] = —2N (0", + o) P,
— —2N(280")P,
— —ANP
— +4NH . (95.81)

Since QlAQTiAa QTiAQlA, Q2AQT2A and QTQAQgA are all positive operators, the eigenvalues
of H must be nonnegative. A state |0) with H|0) = 0 must also obey Q,4]/0) = 0 and
Q144|0) = 0, because any nonzero state [¢)) as a result would lead to (0|H|0) > (1)]¢p) > 0.

a) We have (0[{tc, Qa}[0) = —iv/2e4c(0|F]0). If (0]F|0) # 0, then (0|(Qate + 1cQa)|0) # 0,
and hence either Q4]0) # 0 or (0|Q, # 0; the latter implies (by hermitian conjugation) that
Q2;|0> # 0. Thus if (0|F|0) # 0, either Q,|0) # 0 or Q£|O> # 0. Thus the vacuum is not
annihilated by at least one supercharge, and so supersymmetry is spontaneously broken.

b) We have [V,Q,] = —id,V + 0/.0*°9,V. The relevant term in [V, Q,] is 0*0*0°{ )., Qq}-
We can get a term with this theta structure either from —id, acting on %HHG*H*D, or from
ascﬂ*é(‘)u acting on #c”0*v,. The latter is a mess, so much so that it is best to redefine that
components of V', replacing D with D + %820 and A with A + %ia”@u){f (minus signs not
guaranteed); then we get simpler transformation rules for the component fields. (See Wess
and Bagger or Weinberg I1I for more details.) Since the vacuum is Lorentz invariant, we have
(0]0,v,]0) = 0, and hence (0[{A¢, Qa}|0) = —icqc(0|D]0). Following the argument from part
(a), we conclude that (0|D|0) # 0 results in the spontaneous breaking of supersymmetry.

95.2

~—

95.3) a) We have V = [0W/IA|? + |OW/OB|? + |[0W/OC>. From eq.(94.45) we have F; =
—(OW/0A;)T, so if every F; = 0, then every OW/0A; = 0, and hence V' = 0. We have

OW /DA = k(C? —v?)
OW/dB = mC, (95.82)
OW/0C = mB + 2kAC . (95.83)

However, we cannot have both 0W/9A = 0 and OW/90B = 0, since the former requires
C = v and the latter C = 0. Instead, we must minimize |0W/9A|?> + |0W/0B|?, which yields
26CT(C? — v?) + m2C = 0; the solution is C' = 4(v? — m?/2k2)"/2. (We can always choose
conventions so that the sign is positive.) Then we have, at the minimum, OW/9A = —%m2
and OW/0B = m/(C), where (C) = (v2 — m?/2k2)'/2. Both of these are nonzero (unless v?
happens to equal m?/2x? exactly). For simplicity, we take s, v, and m to be real, and we
also assume that v? > m?/2k?, so that (C) is real.

b) |OW/0A|? 4+ |0W/OB|? is minimized for C = (C). Minimizing |[0W/0C|? then yields
OW/0C = 0, which fixes mB + 2k(C)A = 0. Thus we have (B) = —2k(C)(A)/m, but (A)
is arbitrary. This will lead to a massless (complex) scalar field corresponding to the flat
direction.
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To see this explicitly, define a mixing angle § = tan=!(2x(C)/m), and new fields

X = (cos@)A — (sinf)B ,
Y = (sinf)A + (cos6)B . (95.84)

Then (Y) = 0 and (X) = (4x%0v%/m? —1)/2(A). We then find OW/IC = (4x%v? —m?)/2Y +
2k(A)(C' —(C))+..., where the ellipses stand for terms quadratic in fields with zero expecta-
tion value. We see that the X field is massless. To compute the masses of the C' and Y fields,
we first note that, in [0W/9C|, we can absorb the phase of (A) into the phase of Y, and so
we can replace (A) with [(A)|. Setting C' = (C) + (C1 +iC3)/v/2 and Y = (Y1 +iY3)/V/2, we
find

2
V= 2/{2<C’>2C’12—|—2/12v203—|—%‘(4/{2v2—m2)1/2(Y1—|—iY2)+2/{|(A>|(C'1—I—Z'C'Q)‘ +..., (95.85)

where the ellipses stand for cubic and quartic terms. We thus get a mass-squared matrix for
(1 and Y7 of the form

I{2 2 /{2 2 K
) (4 (A" +4r°(C)° 2 |<A>|<C>>. (95.86)

m g
i 2k[(A)[(C) 4K%20?% — m?

The mass-squared matrix for Cy and Y3 is the same, with (C') — v.
The fermion mass matrix is given by 9?W/ 0A;0A;; taking the fields to be X, Y, and C, we
find the v x is massless, and that the mass matrix for ¥y and ¢ is

0 (4K%02 — m2)1/2>

(4/412’[)2 — m2)1/2 2/€<A> (9587)

My po = (

Since 1 x is the only massless fermion, it must be the goldstino. To verifiy this, we note that
(—F}) = (OW/0X) = (v2 — m?/4r?)/2, while (OW/Y) = (OW/dC) = 0.

95.4) a) The kinetic terms for the components of ® are given by eq.(95.64); to get the kinetic
terms for the components of ®, we take ¢ — —g. The gauge field kinetic terms are given
by eq.(95.77). The terms from the superpotential are given by eq.(95.37). Putting it all
together, we have

L = —(D"A) D, A+ i "D, + FIF + V2epTATA + V2eAT A — eATDA
—(D*A) DA + i) 5" Dyah + FIF — V2edpTATA — V2e ATAp + eATD A
— AF"E,, +i\e"9,\ + 1D?
+m(AF + FA —np + ATFT 1 FTAT — ity (95.88)
where D, = 9, —ieA,, and D, = 0, + ieA,.
b) Eliminating F' and F yields —m?(A'A + ATA). Eliminating D yields —1e?(AfA — AT4)2.

95.5) a) Adding e£D to L preserves supersymmetry because an infinitesimal supersymmetry trans-
formation yields a total derivative. If the gauge group was nonabelian, D would carry an
adjoint index, and so £D would not be gauge invariant.
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b) The terms involving D in £ are now %D2 —eD(ATA— ATA—¢), and so eliminating D yields
—%62(ATA — ATA — ¢€)2. Eliminating the F' and I fields yields —m?(ATA + ATA) as before.

c) We have
V =m?(ATA + ATA) + Je*(ATA — ATA - ¢)?. (95.89)

Then

OV/OAT = [m? + e2(ATA — ATA —¢)]A
VAT = [m? — 2 (ATA — ATA —¢))A. (95.90)

The factors in square brackets sum to 2m?, so both cannot vanish. Therefore, either A or A
(or both) must vanish. If both vanish, we have V' = Vj o = %6252 at the minimum. If we take
A =0and A # 0, then the first square bracket must vanish, which yields ATA = ¢ —m?/e?;
since ATA > 0, this is possible only if & > m?/e?. We then have V = Voo = m%¢ — %m‘l/e2
at the minimum. Since Vjo — Voo = —3(m?/e® — ¢)?, the minimum with A # 0 is lower in
energy. Finally, if we take A = 0 and A # 0, the situation is the same, but with £ — —¢.
(This is obvious from the form of the potential.) We conclude that A acquires a nonzero VEV
if ¢ > m?/e?, and that A acquires a nonzero VEV if £ < —m?/e?.

To see that supersymmetry is broken, we note that D = (ATA—ATA—Q/e. Then (D) = —m?/e
for £ > @2/62 and D = +m?/e for £ < m?/e?. Also, since F! = —mA and [T = —mA, either
(F) or (F) is also nonzero. The massless goldstino is then a linear combination of A and

(if A#0) or 4 (if A #0).

95.6) a) The net R charge of any term in £ must be zero. Since £ has Yukawa couplings of the
form AT\, and Ry = 1, we must have R4 = Ry +1.

b) The superpotential yields Yukawa couplings of the form (8°W/0A4;0A;)ip;. If W has
R charge Ry, then 0°W/ 0A;0A; has R charge Rw — Ra, — Ra;, while ¢;1); has R charge
Ry, + Ry,. Thus (O*W/DA;0A;)inb; has R charge Ry — Ra, — Ra; + Ry, + Ry, = Rw — 2,
and this must vanish; therefore we must have Ry = 2.

c¢) In SQED, W = mAA, and so we must assign R charges to A and A such that R4+ Rz = 2.

Since A and A have opposite electric charge, it is most convenient to assign them both R
charge +1.
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96 THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

96.1) In the Standard Model, the Yukawa couplings are of the form H/e, Hqd, and H'qu. If we
get the first two from terms in the superpotential of the form HLE and HQD, we cannot
get the third, since the superpotential cannot depend on hermitian conjugates of fields. Thus
we need a second Higgs field, H, with opposite hypercharge.

96.2) a) After solving for the D fields, we have Vouartic = %DaD‘H—%DQ, with D = %gl(ﬁTﬁ—HTH)
and D® = go(HIT*H + H'T*H), where T® = 0.

b) The only way the potential could be unbounded below is if the quartic terms vanish, so

we would need D = 0 and D® = 0. Setting H = (8) and H = (8) achieves this. In this

2 so we must have m? + m3 > 2m3 for the

case, the mass terms become (m? + m3 — 2m2)v
potential to be bounded below.

c¢) To have symmetry breaking, we need a negative eigenvalue of the mass-squared matrix
2 2

my  m3 hich ; 22 2,2

> .

(m% m%)’ which requires (m3)® > mims3

d) One linear combination of H and H gets a VEV, and the other does not. The one that gets

a VEV produces three Goldstone bosons that are eaten by the gauge fields, and one neutral

Higgs boson. The remaining linear combination has one component with unit electric charge,

and one component with zero electric charge; each component is a complex scalar field. So in

all we have one particle with positive charge, one with negative charge, and three with zero
charge.

e) Setting H = %(8) and H = %(g), we find

V = dmiv? + im3o® — mivo + 45 (g7 + g3)(v* — v%)%. (96.7)

Differentiating with respect to v and v and setting the results to zero, we find

miv —m3v + 1(g7 + g3) (v = 0*)v = 0, (96.8)
m3v — miv — %(g% +9H(? - =0. (96.9)

If we divide eq. (96.8) by v and eq. (96.9) by v and add, we get

n@+maﬂﬁ(g+%)=o, (96.10)

which immediately yields eq. (96.7).
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97 GRAND UNIFICATION

97.1) With the usual normalization A(5) = 1, we have A(5) = —1. In the notation of problem
70.4, 10 = A, and for SU(N), A(A) = N—4. Thus A(10) = 1 for SU(5), and A(5 @ 10) =
A(5) + A(10) = =1+ 1 = 0. So the SU(5) model is not anomalous.

There is another, more physical, way to see this. Let @) be the electric charge generator in the
5@ 10 representation. We know that all charged fermions can be represented by massive Dirac
fields, and so we know that Tr Q3 must be zero. On the other hand, Tr Q3 oc A(5 @ 10)d?99,
so either A(5@10) = 0, or dQQQ = (. To rule out the latter possibility, we compute Tr Q3 for
a single 5; we get 3(+3)% + (—1)3 # 0. Thus it must be that A(5 & 10) = 0. [This argument
is due to R. Cahn, Phys. Lett. B104, 282 (1981).]

97.2) We have
AB|= 1 af~ 71— ij _+
EL%CH‘ = Mé(ye ﬁ'ydiu%)(ys Iq0ilj +y"ale") + hee. . (97.48)

The first term has the same structure as the first term of eq. (97.25) from X exchange, but
the second term of eq. (97.48) has a different structure than the second term of eq. (97.25).

97.3) As discussed in problems 88.7 and 89.5, diagrams where a gauge boson connects two fermions
with different handedness give no contribution to Z¢o in Lorenz gauge. Diagrams where a
gauge boson connects fermions of the same handedness yields Z,, in Lorenz gauge, with
appropriate replacements of charge/group factors. For Z¢,, the gauge boson must connect
¢ and g, or d' and @', and these contributions add. The appropriate replacements are those
shown in eq. (97.44). For SU(N), we have (%) *“(T%)s" = (54 ﬁgﬁ, — +6,%6g"). Thus
e PN(TY)w (T5)p? = 5(77 — §°77) = 37 and 7' (Tz) (T3);7 = 3(e¥" — 36%) =
—%6”, and so

Zoy = 1—g=(305 + 39 + so1)
=1- 3203 + Jas + Fay)e ! (97.49)

b) The relevant replacement is
(DD — [0+ BT (15)57 /=] 3

+ [0+ (T9) (T5);7 /7|

+ (D)3 + () (D)) e (97.50)
and so
Zoy =1— (305 + 305 + Bgh)e™!
=1— 5 (203 + Jas + Bay)e' . (97.51)

¢) In Lorenz gauge, we have Zy = 1 for each fermion lline (at one-loop order). From problem
88.7, we then have that (at one-loop order) ~; is given by the coefficient of ! in Z¢,. Thus,

v = (2043 + 042 + 12041) (97.52)
Yo = (2043 + 042 + 12041) (97.53)
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d) Note that eq. (97.26) is equivalent to pde;/du = (b;/27)a?, and that, for n = 3, we have
by = =7, by = —%, and by = —I—%. From eq. (88.47), we then have

Cr(p) = {ai‘z’](\’;i)rﬁ {acﬁj(\ji)]ms [%} o Cy (M) (97.54)
=[] ] ] e o

We can apply these down to u = M. At that point, SU(2) x U(1) is broken. (We should
apply electromagnetic renormalization below this scale, but this is a small effect that we will
ignore.) Also, the top quark no longer contributes to b3, which therefore changes from —7 to
—%. Thus we have, for p < My,

=[] [ [am] ] e o
=[] ] ] (] o o

Now we can compute the numerical values, using as(M,) = 0.1187, a(M,) = 1/127.91,
and (for self-consistency) the SU(5) prediction sin? 6y (M) = 0.207, as well as %al(MX) =
ag(My) = as(Mx) = as(Mx) = 1/41.5. We also use eq. (97.30) with My replaced by M, and
by = —% to compute az(p) at p = 2GeV, with the result a3(2GeV) = 0.266. We get

C1(2GeV) = 2.82C1 (My) (97.58)

Cs(2GeV) = 2.98 Co(My) - (97.59)

Using C1(My) = Cy(My) = 4ras(My) /M2 with My = 7x 10" GeV (the one-loop prediction),
we find

C1(2GeV) = 1.7 x 10739 GeV 2, (97.60)

C2(2GeV) = 1.8 x 1073V GeV 2. (97.61)

For more details, see L. F. Abbott and M. B. Wise, Phys. Rev. D22, 2208 (1980).

97.4) a) From eq. (83.26), we see that P, (uN') = P,N and Py (u!N) = Py N. Then, from eqs. (83.20)
and (83.21), we see that (by definition) P, N transforms as (2, 1) under SU(2)1, x SU(2)g while
Py N transforms as (1,2).

b) After replacing the quark operators by the corresponding hadron operators, eq. (97.46) is
simply the translation into Dirac notation of eq. (97.45).
; 0 + ; 0 +
(PN gy (T Vom T__L<7T ﬁw)
c) We have N = <n)’u_l+2fﬂ <\/§7r_ 0 >,andu =1 o \Var a0
see eq. (94.29). Thus (uN)1 = p+ (i/2f)7p+ ... and (u'N); = p— (i/2f:)7% +.... Thus
we have

9

Leg = AEC(CLP, + 2CoPy)p + i(A/2f)7°EC(CLP, — 2Co P )p + hec. . (97.62)
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d) The contributing diagrams are

Pp pe Pp Py De
1 1
Ypr YDx

The dot denotes a vertex from L.g; the vertex with no dot in the second diagram is from
the usual pion-nucleon interaction, (g,/2 fﬂ)(‘)uﬂoﬁ’y“%p, which yields a vertex factor of
(192 /2f=)(—ipE) (vuys) = (9a/2fx)P.v5. The vertex factor for the dot in the first dia-
gram is i2(A/2f;)(C1 P, — 2C2Py). The vertex factor for the dot in the second diagram
is iA(C1 P, 4+ 2C2Pg). Thus we have

Ist diagram = —(A/2f;)u.(C1 P, — 2C2PR)u, , (97.63)

. _ —Pp+m
2nd diagram = +(Ags/2fx)Uc(CL P, + 2C2Pr) — 22— (75 - (97.64)

Dy +my
By momentum conservation p;, = pe, and the positron is on-shell, p> = —m?2, which we neglect
compared to mlz,. Also, we can pull —y, to the left, and use .y, = —m.T., which we can also

neglect. Then we use p, = p, — pe to get
. _ 1
2nd diagram = +(Aga /2 fx)Ue(C1 P, + 2O2PR)m_(ﬂp — Pe)VsUp - (97.65)
P

Again we can pull g, to the left and replace it with —m,, which we can neglect. Then we use
Z/p75up = —75pfpup = +y5mpuy, followed by Prvs = —P, and Prys = + Py, to get

2nd diagram = —(Aga /2fx ) (C1 P, — 2C2PR)u,, (97.66)

From egs. (97.63) and (97.66), we see that the scattering amplitude i7", given by the sum of

the diagrams, is

% Te(C P, — 205 P )y . (97.67)

e) Summing over the positron spin and averaging over the proton spin, we have

iT = —

A?(14g4)?
(7P) = 25 (gm0 1~ 200R) )@ P~ 20
A%(1+g,)?
A?(14g4)?
_ % Te(—,+myp) (C2 P + ACEP,) (—4,)
A?(14g4)?
= % (307 +2C3) (=4pp-pe) (97.68)
Now we use —2p,-pe = (pp — pe)? — pf, —p?=p2 - pf, —p?=-m2+ mf, +m?, and neglecting
me we have , )
(TP = M(mg — m2)(C2+4CY) . (97.69)

E
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We now have I' = (|pe|/87m2)(|T|*) with |pe| = (m3 — m2)'/2 /2m,,, and so

. A2(1+9A)2

=
1287 f2m3

(m2 —m2)*(C} +4C3) . (97.70)
Putting in numbers we get I' = 1.8 x 107 GeV and 7 = 1/T = 1.1 x 103! yr. The naive

estimate I" ~ ggmg/SwMﬁ yields T' ~ 1.6 x 1072 GeV for g5 ~ 0.6 and My = 7 x 10 GeV,
too large by a factor of 10.

For more details see M. Claudson, M. B. Wise, and L. J. Hall, Nucl. Phys. B 195, 297
(1982); O. Kaymakcalan, L. Chong-Huah, and K. C. Wali, Phys. Rev. D 29, 1962 (1984).
For the lattice determination of A (called « in the papers just cited), see N. Tsutsui et al,
Phys. Rev. D70, 111501R (2004).

97.5) a) Gluons do not couple to ¢. The SU(2) structure of both terms is the same, so the SU(2)
contributions to Z, and Z, are the same, and hence cancel in the ratio. The U(1) contribution
to Z, from gauge boson lines that connect to ¢ and to one fermion line is proportional to
Y,(Ys + Yz)g?, while the contribution to Z, is proportional to Y, (Y, + Yg)g%. However,
hypercharge conservation requires Y, +Y;+Yz = 0 and Y,,+ Y, +Y7 = 0, so these contributions
are both proportional to —Ygg%, and hence cancel in the ratio.

b) The argument is the same as in problem 97.3, and the appropriate replacements are
(=1)(+1)e? — (—%)(—I—l)g% for Z,, and (-1 (+1)e? — —C(3)g2 + (—l—%)(—l—%)g% for Z,/, where
C(3) = % is the quadratic Casimir for the fundamental representation of SU(3).

c) We have yy = ZyZ[1/2ZE_1/2Z;1/2y and y(, = Zy/Za_l/2ZE_1/2Z;1/2y/. In Lorenz gauge,
Zy ,za = 1 at one-loop order, and so ro = (Zy /Z,)r, with Zy /Z,, = 1 — 2 (3a3— 2aq)e L.

The anomalous dimension « of  is the coefficient of ¢!, thus
Y= —%(40&3 — g()él) . (9771)

From eq. (88.47), and using b3 = —7 and by = +%, we have
a3<Mz>r/7 [m(Mz)TO/“

r(My) = [ r(Mx) . 97.72
( Z) OZg(MX) al(MX) ( X) ( )
Below M, we neglect the top quark, so that now b3 = —%, and also neglect neglect electro-

magnetic renormalization. The result is

ag(mb)]12/23 [ag(Mz)r/7 [al(Mz)TO/41 (M) (97.73)

rlms) = [ag,(Mz) ()] |Lon(0y)

Now we can compute the numerical values, using as(M,) = 0.1187, a(M,) = 1/127.91,
and (for self-consistency) the SU(5) prediction sin? 6y (M,) = 0.207, as well as r(My) = 1,
Sa1(My) = as(My) = ag(My) = as(Mx) = 1/41.5. We also use eq. (97.30) with My replaced
by M, and bg = —% to compute as(p) at p = my = 4.3 GeV, with the result as(m;) = 0.213.
We get

r(my) = 3.07 . (97.74)
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We therefore predict that m,(mp) = my(mp)/r(mp) = 1.4 GeV. Since we are neglecting elec-
tromagnetic renormalization, we can compare this directly to the physical tau mass, 1.8 GeV;
we are off by about 30%. This is close enough to encourage the notion that the basic frame-
work might be right, but far enough off that the specific details must be wrong.



